How to solve quadratic equation problem having a prepositional logic?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
When $alpha,beta$ are roots of $x^2+bx+c=0$, Find the equation whose roots are $p$ and $q$ where, $p=alpha +beta^2,,q=beta+alpha^2$. Also when $alpha,beta$ are imaginary show that, $b=-1,$if and only if $p,q$ are real.
So far I have found the required equation as (say g(x)); $$g(x)=x^2-(b^2-b-2c)x+(b^2+c^2+c+3bc)=0$$
For the second part, it is given that $alpha,beta$ are imaginary. i.e $b^2-4c<0$
First I assumed $b=-1$ then $$Delta g(x)=(b^2-b-2c)^2-4(b^2+c^2+c+3bc) =0$$
which gives $p,q$ are real (also coincidental)
Then I assumed $p,q$ are real which gives,
$$Delta g(x)geq0$$
$$(b^2-b-2c)^2geq4(b^2+c^2+c+3bc)$$
after few simplifications I ended up with,
$$(b^2-4c)(b+1)^2-4b^2(b+1)geq0$$
How can I say that $b=-1$ at this stage, Do I need to simplify this further? Please Help. Thanks.
quadratics
add a comment |Â
up vote
0
down vote
favorite
When $alpha,beta$ are roots of $x^2+bx+c=0$, Find the equation whose roots are $p$ and $q$ where, $p=alpha +beta^2,,q=beta+alpha^2$. Also when $alpha,beta$ are imaginary show that, $b=-1,$if and only if $p,q$ are real.
So far I have found the required equation as (say g(x)); $$g(x)=x^2-(b^2-b-2c)x+(b^2+c^2+c+3bc)=0$$
For the second part, it is given that $alpha,beta$ are imaginary. i.e $b^2-4c<0$
First I assumed $b=-1$ then $$Delta g(x)=(b^2-b-2c)^2-4(b^2+c^2+c+3bc) =0$$
which gives $p,q$ are real (also coincidental)
Then I assumed $p,q$ are real which gives,
$$Delta g(x)geq0$$
$$(b^2-b-2c)^2geq4(b^2+c^2+c+3bc)$$
after few simplifications I ended up with,
$$(b^2-4c)(b+1)^2-4b^2(b+1)geq0$$
How can I say that $b=-1$ at this stage, Do I need to simplify this further? Please Help. Thanks.
quadratics
1
I think there's an error in $g(x)$: the constant term should be $;colorred-b^colorred3+c+c^2+3bc$.
– Bernard
Jul 18 at 19:15
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
When $alpha,beta$ are roots of $x^2+bx+c=0$, Find the equation whose roots are $p$ and $q$ where, $p=alpha +beta^2,,q=beta+alpha^2$. Also when $alpha,beta$ are imaginary show that, $b=-1,$if and only if $p,q$ are real.
So far I have found the required equation as (say g(x)); $$g(x)=x^2-(b^2-b-2c)x+(b^2+c^2+c+3bc)=0$$
For the second part, it is given that $alpha,beta$ are imaginary. i.e $b^2-4c<0$
First I assumed $b=-1$ then $$Delta g(x)=(b^2-b-2c)^2-4(b^2+c^2+c+3bc) =0$$
which gives $p,q$ are real (also coincidental)
Then I assumed $p,q$ are real which gives,
$$Delta g(x)geq0$$
$$(b^2-b-2c)^2geq4(b^2+c^2+c+3bc)$$
after few simplifications I ended up with,
$$(b^2-4c)(b+1)^2-4b^2(b+1)geq0$$
How can I say that $b=-1$ at this stage, Do I need to simplify this further? Please Help. Thanks.
quadratics
When $alpha,beta$ are roots of $x^2+bx+c=0$, Find the equation whose roots are $p$ and $q$ where, $p=alpha +beta^2,,q=beta+alpha^2$. Also when $alpha,beta$ are imaginary show that, $b=-1,$if and only if $p,q$ are real.
So far I have found the required equation as (say g(x)); $$g(x)=x^2-(b^2-b-2c)x+(b^2+c^2+c+3bc)=0$$
For the second part, it is given that $alpha,beta$ are imaginary. i.e $b^2-4c<0$
First I assumed $b=-1$ then $$Delta g(x)=(b^2-b-2c)^2-4(b^2+c^2+c+3bc) =0$$
which gives $p,q$ are real (also coincidental)
Then I assumed $p,q$ are real which gives,
$$Delta g(x)geq0$$
$$(b^2-b-2c)^2geq4(b^2+c^2+c+3bc)$$
after few simplifications I ended up with,
$$(b^2-4c)(b+1)^2-4b^2(b+1)geq0$$
How can I say that $b=-1$ at this stage, Do I need to simplify this further? Please Help. Thanks.
quadratics
asked Jul 18 at 18:55


emil
324210
324210
1
I think there's an error in $g(x)$: the constant term should be $;colorred-b^colorred3+c+c^2+3bc$.
– Bernard
Jul 18 at 19:15
add a comment |Â
1
I think there's an error in $g(x)$: the constant term should be $;colorred-b^colorred3+c+c^2+3bc$.
– Bernard
Jul 18 at 19:15
1
1
I think there's an error in $g(x)$: the constant term should be $;colorred-b^colorred3+c+c^2+3bc$.
– Bernard
Jul 18 at 19:15
I think there's an error in $g(x)$: the constant term should be $;colorred-b^colorred3+c+c^2+3bc$.
– Bernard
Jul 18 at 19:15
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
There's an error in your polynomial $g(x)$: indeed
$ p+q=alpha+beta+alpha^2+beta^2=-b+(-b)^2-2c=b^2-b-2c$,
$pq=alpha^3+beta^3+alphabeta+alpha^2beta^2=(alpha+beta)^3-3alphabeta(alpha+beta)+alphabeta+alpha^2beta^2=-b^3+3bc+c+c^2$,
so $qquadqquad g(x)=x^2-(b^2-b-2c)x-b^3+3bc+c+c^2$.
Now $p$ and $q$ are real if and only if $;(b^2-b-2c)^2+4(b^3-3bc-c-c^2)ge 0$.
Let's factorise the l.h.s.:
beginalign
(b^2-b&-2c)^2+4(b^3-3bc-c-c^2)\
&=(b^2-b)^2-4(b^2-b)c+4c^2+4(b^3-3bc-c-c^2)\
&=(b^2-b)^2+4b^3+4c(b-b^2+c-3b-1-c)=b^2(b+1)^2-4c(b+1)^2\&=(b+1)^2(b^2-4c)ge 0.
endalign
If $alpha$ and $beta$ are imaginary, $b^2-4c<0$ so the only possibility for $(b+1)^2(b^2-4c)$ to be $ge 0$ is that
$$(b+1)^2=0.$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
There's an error in your polynomial $g(x)$: indeed
$ p+q=alpha+beta+alpha^2+beta^2=-b+(-b)^2-2c=b^2-b-2c$,
$pq=alpha^3+beta^3+alphabeta+alpha^2beta^2=(alpha+beta)^3-3alphabeta(alpha+beta)+alphabeta+alpha^2beta^2=-b^3+3bc+c+c^2$,
so $qquadqquad g(x)=x^2-(b^2-b-2c)x-b^3+3bc+c+c^2$.
Now $p$ and $q$ are real if and only if $;(b^2-b-2c)^2+4(b^3-3bc-c-c^2)ge 0$.
Let's factorise the l.h.s.:
beginalign
(b^2-b&-2c)^2+4(b^3-3bc-c-c^2)\
&=(b^2-b)^2-4(b^2-b)c+4c^2+4(b^3-3bc-c-c^2)\
&=(b^2-b)^2+4b^3+4c(b-b^2+c-3b-1-c)=b^2(b+1)^2-4c(b+1)^2\&=(b+1)^2(b^2-4c)ge 0.
endalign
If $alpha$ and $beta$ are imaginary, $b^2-4c<0$ so the only possibility for $(b+1)^2(b^2-4c)$ to be $ge 0$ is that
$$(b+1)^2=0.$$
add a comment |Â
up vote
2
down vote
accepted
There's an error in your polynomial $g(x)$: indeed
$ p+q=alpha+beta+alpha^2+beta^2=-b+(-b)^2-2c=b^2-b-2c$,
$pq=alpha^3+beta^3+alphabeta+alpha^2beta^2=(alpha+beta)^3-3alphabeta(alpha+beta)+alphabeta+alpha^2beta^2=-b^3+3bc+c+c^2$,
so $qquadqquad g(x)=x^2-(b^2-b-2c)x-b^3+3bc+c+c^2$.
Now $p$ and $q$ are real if and only if $;(b^2-b-2c)^2+4(b^3-3bc-c-c^2)ge 0$.
Let's factorise the l.h.s.:
beginalign
(b^2-b&-2c)^2+4(b^3-3bc-c-c^2)\
&=(b^2-b)^2-4(b^2-b)c+4c^2+4(b^3-3bc-c-c^2)\
&=(b^2-b)^2+4b^3+4c(b-b^2+c-3b-1-c)=b^2(b+1)^2-4c(b+1)^2\&=(b+1)^2(b^2-4c)ge 0.
endalign
If $alpha$ and $beta$ are imaginary, $b^2-4c<0$ so the only possibility for $(b+1)^2(b^2-4c)$ to be $ge 0$ is that
$$(b+1)^2=0.$$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
There's an error in your polynomial $g(x)$: indeed
$ p+q=alpha+beta+alpha^2+beta^2=-b+(-b)^2-2c=b^2-b-2c$,
$pq=alpha^3+beta^3+alphabeta+alpha^2beta^2=(alpha+beta)^3-3alphabeta(alpha+beta)+alphabeta+alpha^2beta^2=-b^3+3bc+c+c^2$,
so $qquadqquad g(x)=x^2-(b^2-b-2c)x-b^3+3bc+c+c^2$.
Now $p$ and $q$ are real if and only if $;(b^2-b-2c)^2+4(b^3-3bc-c-c^2)ge 0$.
Let's factorise the l.h.s.:
beginalign
(b^2-b&-2c)^2+4(b^3-3bc-c-c^2)\
&=(b^2-b)^2-4(b^2-b)c+4c^2+4(b^3-3bc-c-c^2)\
&=(b^2-b)^2+4b^3+4c(b-b^2+c-3b-1-c)=b^2(b+1)^2-4c(b+1)^2\&=(b+1)^2(b^2-4c)ge 0.
endalign
If $alpha$ and $beta$ are imaginary, $b^2-4c<0$ so the only possibility for $(b+1)^2(b^2-4c)$ to be $ge 0$ is that
$$(b+1)^2=0.$$
There's an error in your polynomial $g(x)$: indeed
$ p+q=alpha+beta+alpha^2+beta^2=-b+(-b)^2-2c=b^2-b-2c$,
$pq=alpha^3+beta^3+alphabeta+alpha^2beta^2=(alpha+beta)^3-3alphabeta(alpha+beta)+alphabeta+alpha^2beta^2=-b^3+3bc+c+c^2$,
so $qquadqquad g(x)=x^2-(b^2-b-2c)x-b^3+3bc+c+c^2$.
Now $p$ and $q$ are real if and only if $;(b^2-b-2c)^2+4(b^3-3bc-c-c^2)ge 0$.
Let's factorise the l.h.s.:
beginalign
(b^2-b&-2c)^2+4(b^3-3bc-c-c^2)\
&=(b^2-b)^2-4(b^2-b)c+4c^2+4(b^3-3bc-c-c^2)\
&=(b^2-b)^2+4b^3+4c(b-b^2+c-3b-1-c)=b^2(b+1)^2-4c(b+1)^2\&=(b+1)^2(b^2-4c)ge 0.
endalign
If $alpha$ and $beta$ are imaginary, $b^2-4c<0$ so the only possibility for $(b+1)^2(b^2-4c)$ to be $ge 0$ is that
$$(b+1)^2=0.$$
answered Jul 18 at 19:59
Bernard
110k635103
110k635103
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855887%2fhow-to-solve-quadratic-equation-problem-having-a-prepositional-logic%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
I think there's an error in $g(x)$: the constant term should be $;colorred-b^colorred3+c+c^2+3bc$.
– Bernard
Jul 18 at 19:15