If $A$ is a symmetric matrix, then rank($A^n$) = rank($A$). Is, this statement true?
Clash Royale CLAN TAG#URR8PPP
up vote
-1
down vote
favorite
If $A$ is a symmetric matrix over $mathbbR$, then rank($A^n$) = rank($A$). Is, this statement true?
For $n=2$ and $n=3$ the statement seems to be true but I have no idea how to prove or disprove for the general case.
Thanks in advance!
linear-algebra matrices matrix-rank
 |Â
show 4 more comments
up vote
-1
down vote
favorite
If $A$ is a symmetric matrix over $mathbbR$, then rank($A^n$) = rank($A$). Is, this statement true?
For $n=2$ and $n=3$ the statement seems to be true but I have no idea how to prove or disprove for the general case.
Thanks in advance!
linear-algebra matrices matrix-rank
Can you explain us why the statement is true for $n=2,3$?
– Babelfish
Jul 30 at 9:05
Is $n$ an arbitrary (positive) integer? or the dimension of $A$?
– mr_e_man
Jul 30 at 9:06
@mr_e_man $n$ is an arbitary positive integer.
– reego
Jul 30 at 9:07
1
Spectral theorem should do the trick.
– nicomezi
Jul 30 at 9:07
Symmetric matrix over $mathbbR$ or $mathbbC$?
– Mathematician 42
Jul 30 at 9:09
 |Â
show 4 more comments
up vote
-1
down vote
favorite
up vote
-1
down vote
favorite
If $A$ is a symmetric matrix over $mathbbR$, then rank($A^n$) = rank($A$). Is, this statement true?
For $n=2$ and $n=3$ the statement seems to be true but I have no idea how to prove or disprove for the general case.
Thanks in advance!
linear-algebra matrices matrix-rank
If $A$ is a symmetric matrix over $mathbbR$, then rank($A^n$) = rank($A$). Is, this statement true?
For $n=2$ and $n=3$ the statement seems to be true but I have no idea how to prove or disprove for the general case.
Thanks in advance!
linear-algebra matrices matrix-rank
edited Jul 30 at 9:10
asked Jul 30 at 9:03
reego
787416
787416
Can you explain us why the statement is true for $n=2,3$?
– Babelfish
Jul 30 at 9:05
Is $n$ an arbitrary (positive) integer? or the dimension of $A$?
– mr_e_man
Jul 30 at 9:06
@mr_e_man $n$ is an arbitary positive integer.
– reego
Jul 30 at 9:07
1
Spectral theorem should do the trick.
– nicomezi
Jul 30 at 9:07
Symmetric matrix over $mathbbR$ or $mathbbC$?
– Mathematician 42
Jul 30 at 9:09
 |Â
show 4 more comments
Can you explain us why the statement is true for $n=2,3$?
– Babelfish
Jul 30 at 9:05
Is $n$ an arbitrary (positive) integer? or the dimension of $A$?
– mr_e_man
Jul 30 at 9:06
@mr_e_man $n$ is an arbitary positive integer.
– reego
Jul 30 at 9:07
1
Spectral theorem should do the trick.
– nicomezi
Jul 30 at 9:07
Symmetric matrix over $mathbbR$ or $mathbbC$?
– Mathematician 42
Jul 30 at 9:09
Can you explain us why the statement is true for $n=2,3$?
– Babelfish
Jul 30 at 9:05
Can you explain us why the statement is true for $n=2,3$?
– Babelfish
Jul 30 at 9:05
Is $n$ an arbitrary (positive) integer? or the dimension of $A$?
– mr_e_man
Jul 30 at 9:06
Is $n$ an arbitrary (positive) integer? or the dimension of $A$?
– mr_e_man
Jul 30 at 9:06
@mr_e_man $n$ is an arbitary positive integer.
– reego
Jul 30 at 9:07
@mr_e_man $n$ is an arbitary positive integer.
– reego
Jul 30 at 9:07
1
1
Spectral theorem should do the trick.
– nicomezi
Jul 30 at 9:07
Spectral theorem should do the trick.
– nicomezi
Jul 30 at 9:07
Symmetric matrix over $mathbbR$ or $mathbbC$?
– Mathematician 42
Jul 30 at 9:09
Symmetric matrix over $mathbbR$ or $mathbbC$?
– Mathematician 42
Jul 30 at 9:09
 |Â
show 4 more comments
1 Answer
1
active
oldest
votes
up vote
5
down vote
accepted
Let $A$ be a symmetric $m times m$ - Matrix.
If $x in ker(A^2)$, then $(Ax|Ax)=(A^2x|x)=0$, hence $x in ker(A)$.
This gives $ker(A)=ker(A^2)$, hence $ker(A)=ker(A^k)$ for all $k ge 1$.
It follows (why ?): $im(A)=im(A^k)$ for all $k ge 1$.
Hence $rank(A)=rank(A^k)$ for all $k ge 1$.
Good elementary proof. (+1)
– nicomezi
Jul 30 at 9:11
@nicomezi: Thanks !
– Fred
Jul 30 at 9:12
What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
– Jyrki Lahtonen
Jul 30 at 9:13
1
$(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
– nicomezi
Jul 30 at 9:26
1
$(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
– Fred
Jul 30 at 9:35
 |Â
show 2 more comments
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
Let $A$ be a symmetric $m times m$ - Matrix.
If $x in ker(A^2)$, then $(Ax|Ax)=(A^2x|x)=0$, hence $x in ker(A)$.
This gives $ker(A)=ker(A^2)$, hence $ker(A)=ker(A^k)$ for all $k ge 1$.
It follows (why ?): $im(A)=im(A^k)$ for all $k ge 1$.
Hence $rank(A)=rank(A^k)$ for all $k ge 1$.
Good elementary proof. (+1)
– nicomezi
Jul 30 at 9:11
@nicomezi: Thanks !
– Fred
Jul 30 at 9:12
What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
– Jyrki Lahtonen
Jul 30 at 9:13
1
$(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
– nicomezi
Jul 30 at 9:26
1
$(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
– Fred
Jul 30 at 9:35
 |Â
show 2 more comments
up vote
5
down vote
accepted
Let $A$ be a symmetric $m times m$ - Matrix.
If $x in ker(A^2)$, then $(Ax|Ax)=(A^2x|x)=0$, hence $x in ker(A)$.
This gives $ker(A)=ker(A^2)$, hence $ker(A)=ker(A^k)$ for all $k ge 1$.
It follows (why ?): $im(A)=im(A^k)$ for all $k ge 1$.
Hence $rank(A)=rank(A^k)$ for all $k ge 1$.
Good elementary proof. (+1)
– nicomezi
Jul 30 at 9:11
@nicomezi: Thanks !
– Fred
Jul 30 at 9:12
What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
– Jyrki Lahtonen
Jul 30 at 9:13
1
$(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
– nicomezi
Jul 30 at 9:26
1
$(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
– Fred
Jul 30 at 9:35
 |Â
show 2 more comments
up vote
5
down vote
accepted
up vote
5
down vote
accepted
Let $A$ be a symmetric $m times m$ - Matrix.
If $x in ker(A^2)$, then $(Ax|Ax)=(A^2x|x)=0$, hence $x in ker(A)$.
This gives $ker(A)=ker(A^2)$, hence $ker(A)=ker(A^k)$ for all $k ge 1$.
It follows (why ?): $im(A)=im(A^k)$ for all $k ge 1$.
Hence $rank(A)=rank(A^k)$ for all $k ge 1$.
Let $A$ be a symmetric $m times m$ - Matrix.
If $x in ker(A^2)$, then $(Ax|Ax)=(A^2x|x)=0$, hence $x in ker(A)$.
This gives $ker(A)=ker(A^2)$, hence $ker(A)=ker(A^k)$ for all $k ge 1$.
It follows (why ?): $im(A)=im(A^k)$ for all $k ge 1$.
Hence $rank(A)=rank(A^k)$ for all $k ge 1$.
answered Jul 30 at 9:10


Fred
37k1237
37k1237
Good elementary proof. (+1)
– nicomezi
Jul 30 at 9:11
@nicomezi: Thanks !
– Fred
Jul 30 at 9:12
What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
– Jyrki Lahtonen
Jul 30 at 9:13
1
$(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
– nicomezi
Jul 30 at 9:26
1
$(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
– Fred
Jul 30 at 9:35
 |Â
show 2 more comments
Good elementary proof. (+1)
– nicomezi
Jul 30 at 9:11
@nicomezi: Thanks !
– Fred
Jul 30 at 9:12
What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
– Jyrki Lahtonen
Jul 30 at 9:13
1
$(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
– nicomezi
Jul 30 at 9:26
1
$(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
– Fred
Jul 30 at 9:35
Good elementary proof. (+1)
– nicomezi
Jul 30 at 9:11
Good elementary proof. (+1)
– nicomezi
Jul 30 at 9:11
@nicomezi: Thanks !
– Fred
Jul 30 at 9:12
@nicomezi: Thanks !
– Fred
Jul 30 at 9:12
What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
– Jyrki Lahtonen
Jul 30 at 9:13
What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
– Jyrki Lahtonen
Jul 30 at 9:13
1
1
$(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
– nicomezi
Jul 30 at 9:26
$(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
– nicomezi
Jul 30 at 9:26
1
1
$(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
– Fred
Jul 30 at 9:35
$(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
– Fred
Jul 30 at 9:35
 |Â
show 2 more comments
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866808%2fif-a-is-a-symmetric-matrix-then-rankan-ranka-is-this-statement%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Can you explain us why the statement is true for $n=2,3$?
– Babelfish
Jul 30 at 9:05
Is $n$ an arbitrary (positive) integer? or the dimension of $A$?
– mr_e_man
Jul 30 at 9:06
@mr_e_man $n$ is an arbitary positive integer.
– reego
Jul 30 at 9:07
1
Spectral theorem should do the trick.
– nicomezi
Jul 30 at 9:07
Symmetric matrix over $mathbbR$ or $mathbbC$?
– Mathematician 42
Jul 30 at 9:09