If $A$ is a symmetric matrix, then rank($A^n$) = rank($A$). Is, this statement true?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
-1
down vote

favorite
1












If $A$ is a symmetric matrix over $mathbbR$, then rank($A^n$) = rank($A$). Is, this statement true?



For $n=2$ and $n=3$ the statement seems to be true but I have no idea how to prove or disprove for the general case.



Thanks in advance!







share|cite|improve this question





















  • Can you explain us why the statement is true for $n=2,3$?
    – Babelfish
    Jul 30 at 9:05










  • Is $n$ an arbitrary (positive) integer? or the dimension of $A$?
    – mr_e_man
    Jul 30 at 9:06










  • @mr_e_man $n$ is an arbitary positive integer.
    – reego
    Jul 30 at 9:07






  • 1




    Spectral theorem should do the trick.
    – nicomezi
    Jul 30 at 9:07










  • Symmetric matrix over $mathbbR$ or $mathbbC$?
    – Mathematician 42
    Jul 30 at 9:09














up vote
-1
down vote

favorite
1












If $A$ is a symmetric matrix over $mathbbR$, then rank($A^n$) = rank($A$). Is, this statement true?



For $n=2$ and $n=3$ the statement seems to be true but I have no idea how to prove or disprove for the general case.



Thanks in advance!







share|cite|improve this question





















  • Can you explain us why the statement is true for $n=2,3$?
    – Babelfish
    Jul 30 at 9:05










  • Is $n$ an arbitrary (positive) integer? or the dimension of $A$?
    – mr_e_man
    Jul 30 at 9:06










  • @mr_e_man $n$ is an arbitary positive integer.
    – reego
    Jul 30 at 9:07






  • 1




    Spectral theorem should do the trick.
    – nicomezi
    Jul 30 at 9:07










  • Symmetric matrix over $mathbbR$ or $mathbbC$?
    – Mathematician 42
    Jul 30 at 9:09












up vote
-1
down vote

favorite
1









up vote
-1
down vote

favorite
1






1





If $A$ is a symmetric matrix over $mathbbR$, then rank($A^n$) = rank($A$). Is, this statement true?



For $n=2$ and $n=3$ the statement seems to be true but I have no idea how to prove or disprove for the general case.



Thanks in advance!







share|cite|improve this question













If $A$ is a symmetric matrix over $mathbbR$, then rank($A^n$) = rank($A$). Is, this statement true?



For $n=2$ and $n=3$ the statement seems to be true but I have no idea how to prove or disprove for the general case.



Thanks in advance!









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 30 at 9:10
























asked Jul 30 at 9:03









reego

787416




787416











  • Can you explain us why the statement is true for $n=2,3$?
    – Babelfish
    Jul 30 at 9:05










  • Is $n$ an arbitrary (positive) integer? or the dimension of $A$?
    – mr_e_man
    Jul 30 at 9:06










  • @mr_e_man $n$ is an arbitary positive integer.
    – reego
    Jul 30 at 9:07






  • 1




    Spectral theorem should do the trick.
    – nicomezi
    Jul 30 at 9:07










  • Symmetric matrix over $mathbbR$ or $mathbbC$?
    – Mathematician 42
    Jul 30 at 9:09
















  • Can you explain us why the statement is true for $n=2,3$?
    – Babelfish
    Jul 30 at 9:05










  • Is $n$ an arbitrary (positive) integer? or the dimension of $A$?
    – mr_e_man
    Jul 30 at 9:06










  • @mr_e_man $n$ is an arbitary positive integer.
    – reego
    Jul 30 at 9:07






  • 1




    Spectral theorem should do the trick.
    – nicomezi
    Jul 30 at 9:07










  • Symmetric matrix over $mathbbR$ or $mathbbC$?
    – Mathematician 42
    Jul 30 at 9:09















Can you explain us why the statement is true for $n=2,3$?
– Babelfish
Jul 30 at 9:05




Can you explain us why the statement is true for $n=2,3$?
– Babelfish
Jul 30 at 9:05












Is $n$ an arbitrary (positive) integer? or the dimension of $A$?
– mr_e_man
Jul 30 at 9:06




Is $n$ an arbitrary (positive) integer? or the dimension of $A$?
– mr_e_man
Jul 30 at 9:06












@mr_e_man $n$ is an arbitary positive integer.
– reego
Jul 30 at 9:07




@mr_e_man $n$ is an arbitary positive integer.
– reego
Jul 30 at 9:07




1




1




Spectral theorem should do the trick.
– nicomezi
Jul 30 at 9:07




Spectral theorem should do the trick.
– nicomezi
Jul 30 at 9:07












Symmetric matrix over $mathbbR$ or $mathbbC$?
– Mathematician 42
Jul 30 at 9:09




Symmetric matrix over $mathbbR$ or $mathbbC$?
– Mathematician 42
Jul 30 at 9:09










1 Answer
1






active

oldest

votes

















up vote
5
down vote



accepted










Let $A$ be a symmetric $m times m$ - Matrix.



If $x in ker(A^2)$, then $(Ax|Ax)=(A^2x|x)=0$, hence $x in ker(A)$.



This gives $ker(A)=ker(A^2)$, hence $ker(A)=ker(A^k)$ for all $k ge 1$.



It follows (why ?): $im(A)=im(A^k)$ for all $k ge 1$.



Hence $rank(A)=rank(A^k)$ for all $k ge 1$.






share|cite|improve this answer





















  • Good elementary proof. (+1)
    – nicomezi
    Jul 30 at 9:11










  • @nicomezi: Thanks !
    – Fred
    Jul 30 at 9:12










  • What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
    – Jyrki Lahtonen
    Jul 30 at 9:13







  • 1




    $(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
    – nicomezi
    Jul 30 at 9:26







  • 1




    $(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
    – Fred
    Jul 30 at 9:35










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866808%2fif-a-is-a-symmetric-matrix-then-rankan-ranka-is-this-statement%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
5
down vote



accepted










Let $A$ be a symmetric $m times m$ - Matrix.



If $x in ker(A^2)$, then $(Ax|Ax)=(A^2x|x)=0$, hence $x in ker(A)$.



This gives $ker(A)=ker(A^2)$, hence $ker(A)=ker(A^k)$ for all $k ge 1$.



It follows (why ?): $im(A)=im(A^k)$ for all $k ge 1$.



Hence $rank(A)=rank(A^k)$ for all $k ge 1$.






share|cite|improve this answer





















  • Good elementary proof. (+1)
    – nicomezi
    Jul 30 at 9:11










  • @nicomezi: Thanks !
    – Fred
    Jul 30 at 9:12










  • What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
    – Jyrki Lahtonen
    Jul 30 at 9:13







  • 1




    $(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
    – nicomezi
    Jul 30 at 9:26







  • 1




    $(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
    – Fred
    Jul 30 at 9:35














up vote
5
down vote



accepted










Let $A$ be a symmetric $m times m$ - Matrix.



If $x in ker(A^2)$, then $(Ax|Ax)=(A^2x|x)=0$, hence $x in ker(A)$.



This gives $ker(A)=ker(A^2)$, hence $ker(A)=ker(A^k)$ for all $k ge 1$.



It follows (why ?): $im(A)=im(A^k)$ for all $k ge 1$.



Hence $rank(A)=rank(A^k)$ for all $k ge 1$.






share|cite|improve this answer





















  • Good elementary proof. (+1)
    – nicomezi
    Jul 30 at 9:11










  • @nicomezi: Thanks !
    – Fred
    Jul 30 at 9:12










  • What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
    – Jyrki Lahtonen
    Jul 30 at 9:13







  • 1




    $(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
    – nicomezi
    Jul 30 at 9:26







  • 1




    $(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
    – Fred
    Jul 30 at 9:35












up vote
5
down vote



accepted







up vote
5
down vote



accepted






Let $A$ be a symmetric $m times m$ - Matrix.



If $x in ker(A^2)$, then $(Ax|Ax)=(A^2x|x)=0$, hence $x in ker(A)$.



This gives $ker(A)=ker(A^2)$, hence $ker(A)=ker(A^k)$ for all $k ge 1$.



It follows (why ?): $im(A)=im(A^k)$ for all $k ge 1$.



Hence $rank(A)=rank(A^k)$ for all $k ge 1$.






share|cite|improve this answer













Let $A$ be a symmetric $m times m$ - Matrix.



If $x in ker(A^2)$, then $(Ax|Ax)=(A^2x|x)=0$, hence $x in ker(A)$.



This gives $ker(A)=ker(A^2)$, hence $ker(A)=ker(A^k)$ for all $k ge 1$.



It follows (why ?): $im(A)=im(A^k)$ for all $k ge 1$.



Hence $rank(A)=rank(A^k)$ for all $k ge 1$.







share|cite|improve this answer













share|cite|improve this answer



share|cite|improve this answer











answered Jul 30 at 9:10









Fred

37k1237




37k1237











  • Good elementary proof. (+1)
    – nicomezi
    Jul 30 at 9:11










  • @nicomezi: Thanks !
    – Fred
    Jul 30 at 9:12










  • What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
    – Jyrki Lahtonen
    Jul 30 at 9:13







  • 1




    $(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
    – nicomezi
    Jul 30 at 9:26







  • 1




    $(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
    – Fred
    Jul 30 at 9:35
















  • Good elementary proof. (+1)
    – nicomezi
    Jul 30 at 9:11










  • @nicomezi: Thanks !
    – Fred
    Jul 30 at 9:12










  • What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
    – Jyrki Lahtonen
    Jul 30 at 9:13







  • 1




    $(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
    – nicomezi
    Jul 30 at 9:26







  • 1




    $(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
    – Fred
    Jul 30 at 9:35















Good elementary proof. (+1)
– nicomezi
Jul 30 at 9:11




Good elementary proof. (+1)
– nicomezi
Jul 30 at 9:11












@nicomezi: Thanks !
– Fred
Jul 30 at 9:12




@nicomezi: Thanks !
– Fred
Jul 30 at 9:12












What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
– Jyrki Lahtonen
Jul 30 at 9:13





What nicomezi said! I was about to invoke the theorem of symmetric matrices being diagonalizable etc :-)
– Jyrki Lahtonen
Jul 30 at 9:13





1




1




$(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
– nicomezi
Jul 30 at 9:26





$(Ax|Ax)$ is the standard inner product on $mathbbR^N$ of $Ax$ with itself.
– nicomezi
Jul 30 at 9:26





1




1




$(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
– Fred
Jul 30 at 9:35




$(Ax|Ax)=(A^TAx|x)$ and $A^T=A$.
– Fred
Jul 30 at 9:35












 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866808%2fif-a-is-a-symmetric-matrix-then-rankan-ranka-is-this-statement%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?