Increasing multivariate function: interpreting the definition

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
1












I have doubts on how to interpret the following definition of $L$-increasing function.



Let $barmathbbRequiv mathbbRcup -infty, +infty$, where $mathbbR$ denotes the real line.



Let $barmathbbR^L$ be the $L$-fold Cartesian product for a positive integer $L$.



Let $mathcalUequiv mathcalU_1 times ... times mathcalU_L subseteq barmathbbR^L$ with $ mathcalU_lsubseteq barmathbbR$ $forall l in 1,...,L$.



Definition $F: mathcalUrightarrow ...$ is $L$-increasing if $forall u', u''in mathcalU$ with $u'leq u''$ component-wise



$$
textVol_F(u', u'')equiv sum_uin textVrt(u', u'')textsgn_u', u''(u)F(u)geq 0
$$
where



  • $textVrt(u', u'')equiv uin mathcalU text: u_lin u_l', u_l'' text forall lin 1,...,L$


  • $textsgn_u', u''(u)equiv begincases
    1 & text if $u_l=u_l'$ for an even number of $lin 1,...,L$\
    -1 & text if $u_l=u_l'$ for an odd number of $lin 1,...,L$\
    endcases$


  • $textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box


Question I am confused on the last part of the definition: "$textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box". Could you help me to understand why $textVol_F(u', u'')$ is a volume?



I have tried to picture an example for $L=2$



enter image description here



The green area is $F$.



Suppose $u'equiv (2,2)$ and $u''equiv (4,3)$. Hence, $textVrt(u', u'')equiv u', u'', A, B$ with $Aequiv (u'_1, u''_2)$ and $Bequiv (u''_1, u'_2)$. Thus, we get



$$
textVol_F(u', u'')equiv 1*F(u')+1*F(u'')-1*F(A)-1*F(B)
$$



Why this is a volume? It looks like just the difference between points' heights.







share|cite|improve this question























    up vote
    4
    down vote

    favorite
    1












    I have doubts on how to interpret the following definition of $L$-increasing function.



    Let $barmathbbRequiv mathbbRcup -infty, +infty$, where $mathbbR$ denotes the real line.



    Let $barmathbbR^L$ be the $L$-fold Cartesian product for a positive integer $L$.



    Let $mathcalUequiv mathcalU_1 times ... times mathcalU_L subseteq barmathbbR^L$ with $ mathcalU_lsubseteq barmathbbR$ $forall l in 1,...,L$.



    Definition $F: mathcalUrightarrow ...$ is $L$-increasing if $forall u', u''in mathcalU$ with $u'leq u''$ component-wise



    $$
    textVol_F(u', u'')equiv sum_uin textVrt(u', u'')textsgn_u', u''(u)F(u)geq 0
    $$
    where



    • $textVrt(u', u'')equiv uin mathcalU text: u_lin u_l', u_l'' text forall lin 1,...,L$


    • $textsgn_u', u''(u)equiv begincases
      1 & text if $u_l=u_l'$ for an even number of $lin 1,...,L$\
      -1 & text if $u_l=u_l'$ for an odd number of $lin 1,...,L$\
      endcases$


    • $textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box


    Question I am confused on the last part of the definition: "$textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box". Could you help me to understand why $textVol_F(u', u'')$ is a volume?



    I have tried to picture an example for $L=2$



    enter image description here



    The green area is $F$.



    Suppose $u'equiv (2,2)$ and $u''equiv (4,3)$. Hence, $textVrt(u', u'')equiv u', u'', A, B$ with $Aequiv (u'_1, u''_2)$ and $Bequiv (u''_1, u'_2)$. Thus, we get



    $$
    textVol_F(u', u'')equiv 1*F(u')+1*F(u'')-1*F(A)-1*F(B)
    $$



    Why this is a volume? It looks like just the difference between points' heights.







    share|cite|improve this question





















      up vote
      4
      down vote

      favorite
      1









      up vote
      4
      down vote

      favorite
      1






      1





      I have doubts on how to interpret the following definition of $L$-increasing function.



      Let $barmathbbRequiv mathbbRcup -infty, +infty$, where $mathbbR$ denotes the real line.



      Let $barmathbbR^L$ be the $L$-fold Cartesian product for a positive integer $L$.



      Let $mathcalUequiv mathcalU_1 times ... times mathcalU_L subseteq barmathbbR^L$ with $ mathcalU_lsubseteq barmathbbR$ $forall l in 1,...,L$.



      Definition $F: mathcalUrightarrow ...$ is $L$-increasing if $forall u', u''in mathcalU$ with $u'leq u''$ component-wise



      $$
      textVol_F(u', u'')equiv sum_uin textVrt(u', u'')textsgn_u', u''(u)F(u)geq 0
      $$
      where



      • $textVrt(u', u'')equiv uin mathcalU text: u_lin u_l', u_l'' text forall lin 1,...,L$


      • $textsgn_u', u''(u)equiv begincases
        1 & text if $u_l=u_l'$ for an even number of $lin 1,...,L$\
        -1 & text if $u_l=u_l'$ for an odd number of $lin 1,...,L$\
        endcases$


      • $textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box


      Question I am confused on the last part of the definition: "$textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box". Could you help me to understand why $textVol_F(u', u'')$ is a volume?



      I have tried to picture an example for $L=2$



      enter image description here



      The green area is $F$.



      Suppose $u'equiv (2,2)$ and $u''equiv (4,3)$. Hence, $textVrt(u', u'')equiv u', u'', A, B$ with $Aequiv (u'_1, u''_2)$ and $Bequiv (u''_1, u'_2)$. Thus, we get



      $$
      textVol_F(u', u'')equiv 1*F(u')+1*F(u'')-1*F(A)-1*F(B)
      $$



      Why this is a volume? It looks like just the difference between points' heights.







      share|cite|improve this question











      I have doubts on how to interpret the following definition of $L$-increasing function.



      Let $barmathbbRequiv mathbbRcup -infty, +infty$, where $mathbbR$ denotes the real line.



      Let $barmathbbR^L$ be the $L$-fold Cartesian product for a positive integer $L$.



      Let $mathcalUequiv mathcalU_1 times ... times mathcalU_L subseteq barmathbbR^L$ with $ mathcalU_lsubseteq barmathbbR$ $forall l in 1,...,L$.



      Definition $F: mathcalUrightarrow ...$ is $L$-increasing if $forall u', u''in mathcalU$ with $u'leq u''$ component-wise



      $$
      textVol_F(u', u'')equiv sum_uin textVrt(u', u'')textsgn_u', u''(u)F(u)geq 0
      $$
      where



      • $textVrt(u', u'')equiv uin mathcalU text: u_lin u_l', u_l'' text forall lin 1,...,L$


      • $textsgn_u', u''(u)equiv begincases
        1 & text if $u_l=u_l'$ for an even number of $lin 1,...,L$\
        -1 & text if $u_l=u_l'$ for an odd number of $lin 1,...,L$\
        endcases$


      • $textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box


      Question I am confused on the last part of the definition: "$textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box". Could you help me to understand why $textVol_F(u', u'')$ is a volume?



      I have tried to picture an example for $L=2$



      enter image description here



      The green area is $F$.



      Suppose $u'equiv (2,2)$ and $u''equiv (4,3)$. Hence, $textVrt(u', u'')equiv u', u'', A, B$ with $Aequiv (u'_1, u''_2)$ and $Bequiv (u''_1, u'_2)$. Thus, we get



      $$
      textVol_F(u', u'')equiv 1*F(u')+1*F(u'')-1*F(A)-1*F(B)
      $$



      Why this is a volume? It looks like just the difference between points' heights.









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 24 at 10:14









      TEX

      2419




      2419

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861184%2fincreasing-multivariate-function-interpreting-the-definition%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861184%2fincreasing-multivariate-function-interpreting-the-definition%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?