Increasing multivariate function: interpreting the definition
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
I have doubts on how to interpret the following definition of $L$-increasing function.
Let $barmathbbRequiv mathbbRcup -infty, +infty$, where $mathbbR$ denotes the real line.
Let $barmathbbR^L$ be the $L$-fold Cartesian product for a positive integer $L$.
Let $mathcalUequiv mathcalU_1 times ... times mathcalU_L subseteq barmathbbR^L$ with $ mathcalU_lsubseteq barmathbbR$ $forall l in 1,...,L$.
Definition $F: mathcalUrightarrow ...$ is $L$-increasing if $forall u', u''in mathcalU$ with $u'leq u''$ component-wise
$$
textVol_F(u', u'')equiv sum_uin textVrt(u', u'')textsgn_u', u''(u)F(u)geq 0
$$
where
$textVrt(u', u'')equiv uin mathcalU text: u_lin u_l', u_l'' text forall lin 1,...,L$
$textsgn_u', u''(u)equiv begincases
1 & text if $u_l=u_l'$ for an even number of $lin 1,...,L$\
-1 & text if $u_l=u_l'$ for an odd number of $lin 1,...,L$\
endcases$$textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box
Question I am confused on the last part of the definition: "$textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box". Could you help me to understand why $textVol_F(u', u'')$ is a volume?
I have tried to picture an example for $L=2$
The green area is $F$.
Suppose $u'equiv (2,2)$ and $u''equiv (4,3)$. Hence, $textVrt(u', u'')equiv u', u'', A, B$ with $Aequiv (u'_1, u''_2)$ and $Bequiv (u''_1, u'_2)$. Thus, we get
$$
textVol_F(u', u'')equiv 1*F(u')+1*F(u'')-1*F(A)-1*F(B)
$$
Why this is a volume? It looks like just the difference between points' heights.
geometry functional-analysis functions
add a comment |Â
up vote
4
down vote
favorite
I have doubts on how to interpret the following definition of $L$-increasing function.
Let $barmathbbRequiv mathbbRcup -infty, +infty$, where $mathbbR$ denotes the real line.
Let $barmathbbR^L$ be the $L$-fold Cartesian product for a positive integer $L$.
Let $mathcalUequiv mathcalU_1 times ... times mathcalU_L subseteq barmathbbR^L$ with $ mathcalU_lsubseteq barmathbbR$ $forall l in 1,...,L$.
Definition $F: mathcalUrightarrow ...$ is $L$-increasing if $forall u', u''in mathcalU$ with $u'leq u''$ component-wise
$$
textVol_F(u', u'')equiv sum_uin textVrt(u', u'')textsgn_u', u''(u)F(u)geq 0
$$
where
$textVrt(u', u'')equiv uin mathcalU text: u_lin u_l', u_l'' text forall lin 1,...,L$
$textsgn_u', u''(u)equiv begincases
1 & text if $u_l=u_l'$ for an even number of $lin 1,...,L$\
-1 & text if $u_l=u_l'$ for an odd number of $lin 1,...,L$\
endcases$$textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box
Question I am confused on the last part of the definition: "$textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box". Could you help me to understand why $textVol_F(u', u'')$ is a volume?
I have tried to picture an example for $L=2$
The green area is $F$.
Suppose $u'equiv (2,2)$ and $u''equiv (4,3)$. Hence, $textVrt(u', u'')equiv u', u'', A, B$ with $Aequiv (u'_1, u''_2)$ and $Bequiv (u''_1, u'_2)$. Thus, we get
$$
textVol_F(u', u'')equiv 1*F(u')+1*F(u'')-1*F(A)-1*F(B)
$$
Why this is a volume? It looks like just the difference between points' heights.
geometry functional-analysis functions
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
I have doubts on how to interpret the following definition of $L$-increasing function.
Let $barmathbbRequiv mathbbRcup -infty, +infty$, where $mathbbR$ denotes the real line.
Let $barmathbbR^L$ be the $L$-fold Cartesian product for a positive integer $L$.
Let $mathcalUequiv mathcalU_1 times ... times mathcalU_L subseteq barmathbbR^L$ with $ mathcalU_lsubseteq barmathbbR$ $forall l in 1,...,L$.
Definition $F: mathcalUrightarrow ...$ is $L$-increasing if $forall u', u''in mathcalU$ with $u'leq u''$ component-wise
$$
textVol_F(u', u'')equiv sum_uin textVrt(u', u'')textsgn_u', u''(u)F(u)geq 0
$$
where
$textVrt(u', u'')equiv uin mathcalU text: u_lin u_l', u_l'' text forall lin 1,...,L$
$textsgn_u', u''(u)equiv begincases
1 & text if $u_l=u_l'$ for an even number of $lin 1,...,L$\
-1 & text if $u_l=u_l'$ for an odd number of $lin 1,...,L$\
endcases$$textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box
Question I am confused on the last part of the definition: "$textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box". Could you help me to understand why $textVol_F(u', u'')$ is a volume?
I have tried to picture an example for $L=2$
The green area is $F$.
Suppose $u'equiv (2,2)$ and $u''equiv (4,3)$. Hence, $textVrt(u', u'')equiv u', u'', A, B$ with $Aequiv (u'_1, u''_2)$ and $Bequiv (u''_1, u'_2)$. Thus, we get
$$
textVol_F(u', u'')equiv 1*F(u')+1*F(u'')-1*F(A)-1*F(B)
$$
Why this is a volume? It looks like just the difference between points' heights.
geometry functional-analysis functions
I have doubts on how to interpret the following definition of $L$-increasing function.
Let $barmathbbRequiv mathbbRcup -infty, +infty$, where $mathbbR$ denotes the real line.
Let $barmathbbR^L$ be the $L$-fold Cartesian product for a positive integer $L$.
Let $mathcalUequiv mathcalU_1 times ... times mathcalU_L subseteq barmathbbR^L$ with $ mathcalU_lsubseteq barmathbbR$ $forall l in 1,...,L$.
Definition $F: mathcalUrightarrow ...$ is $L$-increasing if $forall u', u''in mathcalU$ with $u'leq u''$ component-wise
$$
textVol_F(u', u'')equiv sum_uin textVrt(u', u'')textsgn_u', u''(u)F(u)geq 0
$$
where
$textVrt(u', u'')equiv uin mathcalU text: u_lin u_l', u_l'' text forall lin 1,...,L$
$textsgn_u', u''(u)equiv begincases
1 & text if $u_l=u_l'$ for an even number of $lin 1,...,L$\
-1 & text if $u_l=u_l'$ for an odd number of $lin 1,...,L$\
endcases$$textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box
Question I am confused on the last part of the definition: "$textVol_F(u', u'')$ is the $F$-volume of the $L$-box $[u_1', u_1'']times ... times [u_L', u_L'']$ and the elements of the set $textVrt(u', u'')$ are the vertices of the $L$-box". Could you help me to understand why $textVol_F(u', u'')$ is a volume?
I have tried to picture an example for $L=2$
The green area is $F$.
Suppose $u'equiv (2,2)$ and $u''equiv (4,3)$. Hence, $textVrt(u', u'')equiv u', u'', A, B$ with $Aequiv (u'_1, u''_2)$ and $Bequiv (u''_1, u'_2)$. Thus, we get
$$
textVol_F(u', u'')equiv 1*F(u')+1*F(u'')-1*F(A)-1*F(B)
$$
Why this is a volume? It looks like just the difference between points' heights.
geometry functional-analysis functions
asked Jul 24 at 10:14
TEX
2419
2419
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861184%2fincreasing-multivariate-function-interpreting-the-definition%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password