Laurent Expansion Of $frac1z^2+1$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Expand $frac1z^2+1$ around $0<|z-i|<2$
$$frac1z^2+1=frac12i(z-i)-frac12i(z+i)=frac12icdotfrac1(z-i)-frac12icdotfrac1(z+i)$$
How can I expand it to Laurent series?
complex-analysis laurent-series
add a comment |Â
up vote
0
down vote
favorite
Expand $frac1z^2+1$ around $0<|z-i|<2$
$$frac1z^2+1=frac12i(z-i)-frac12i(z+i)=frac12icdotfrac1(z-i)-frac12icdotfrac1(z+i)$$
How can I expand it to Laurent series?
complex-analysis laurent-series
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Expand $frac1z^2+1$ around $0<|z-i|<2$
$$frac1z^2+1=frac12i(z-i)-frac12i(z+i)=frac12icdotfrac1(z-i)-frac12icdotfrac1(z+i)$$
How can I expand it to Laurent series?
complex-analysis laurent-series
Expand $frac1z^2+1$ around $0<|z-i|<2$
$$frac1z^2+1=frac12i(z-i)-frac12i(z+i)=frac12icdotfrac1(z-i)-frac12icdotfrac1(z+i)$$
How can I expand it to Laurent series?
complex-analysis laurent-series
edited Jul 16 at 11:55
Michael Hardy
204k23186463
204k23186463
asked Jul 16 at 11:49
newhere
759310
759310
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
5
down vote
We have the complex function with respect to $z$ :
$$f(z) = frac1z^2+1$$
Note, that to form the factor $z-i$, one can manipulate $f(z)$, as :
$$f(z) = frac1z^2+1 = frac1(z+i)(z-i)=frac1[(z-i)+2i](z-i)$$
$$=$$
$$frac1(z-i)^2big[1+frac2iz-ibig]$$
Recall now, that :
$$frac11+w = sum_n=0^infty (-1)^nw^n, ; ; |w|<1$$
thus, the function can be written as an expansion :
$$f(z) = frac1(z-i)^2cdot frac11+frac2iz-i=frac1(z-i)^2sum_n=0^infty(-1)^nbigg(frac2iz-ibigg)^n$$
$$implies$$
$$f(z) = sum_n=0^infty(-1)^nfrac(2i)^n(z-i)^n+2$$
for $bigg| frac2iz-i bigg| < 1 $.
Since the expansion of an analytic complex function is unique, this is the Laurent Expansion wanted.
1
Are you sure $bigg| frac2iz-i bigg| < 1 Leftrightarrow 0 < |z-i| < 2$ ??
– Riemann
Jul 16 at 13:01
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
We have the complex function with respect to $z$ :
$$f(z) = frac1z^2+1$$
Note, that to form the factor $z-i$, one can manipulate $f(z)$, as :
$$f(z) = frac1z^2+1 = frac1(z+i)(z-i)=frac1[(z-i)+2i](z-i)$$
$$=$$
$$frac1(z-i)^2big[1+frac2iz-ibig]$$
Recall now, that :
$$frac11+w = sum_n=0^infty (-1)^nw^n, ; ; |w|<1$$
thus, the function can be written as an expansion :
$$f(z) = frac1(z-i)^2cdot frac11+frac2iz-i=frac1(z-i)^2sum_n=0^infty(-1)^nbigg(frac2iz-ibigg)^n$$
$$implies$$
$$f(z) = sum_n=0^infty(-1)^nfrac(2i)^n(z-i)^n+2$$
for $bigg| frac2iz-i bigg| < 1 $.
Since the expansion of an analytic complex function is unique, this is the Laurent Expansion wanted.
1
Are you sure $bigg| frac2iz-i bigg| < 1 Leftrightarrow 0 < |z-i| < 2$ ??
– Riemann
Jul 16 at 13:01
add a comment |Â
up vote
5
down vote
We have the complex function with respect to $z$ :
$$f(z) = frac1z^2+1$$
Note, that to form the factor $z-i$, one can manipulate $f(z)$, as :
$$f(z) = frac1z^2+1 = frac1(z+i)(z-i)=frac1[(z-i)+2i](z-i)$$
$$=$$
$$frac1(z-i)^2big[1+frac2iz-ibig]$$
Recall now, that :
$$frac11+w = sum_n=0^infty (-1)^nw^n, ; ; |w|<1$$
thus, the function can be written as an expansion :
$$f(z) = frac1(z-i)^2cdot frac11+frac2iz-i=frac1(z-i)^2sum_n=0^infty(-1)^nbigg(frac2iz-ibigg)^n$$
$$implies$$
$$f(z) = sum_n=0^infty(-1)^nfrac(2i)^n(z-i)^n+2$$
for $bigg| frac2iz-i bigg| < 1 $.
Since the expansion of an analytic complex function is unique, this is the Laurent Expansion wanted.
1
Are you sure $bigg| frac2iz-i bigg| < 1 Leftrightarrow 0 < |z-i| < 2$ ??
– Riemann
Jul 16 at 13:01
add a comment |Â
up vote
5
down vote
up vote
5
down vote
We have the complex function with respect to $z$ :
$$f(z) = frac1z^2+1$$
Note, that to form the factor $z-i$, one can manipulate $f(z)$, as :
$$f(z) = frac1z^2+1 = frac1(z+i)(z-i)=frac1[(z-i)+2i](z-i)$$
$$=$$
$$frac1(z-i)^2big[1+frac2iz-ibig]$$
Recall now, that :
$$frac11+w = sum_n=0^infty (-1)^nw^n, ; ; |w|<1$$
thus, the function can be written as an expansion :
$$f(z) = frac1(z-i)^2cdot frac11+frac2iz-i=frac1(z-i)^2sum_n=0^infty(-1)^nbigg(frac2iz-ibigg)^n$$
$$implies$$
$$f(z) = sum_n=0^infty(-1)^nfrac(2i)^n(z-i)^n+2$$
for $bigg| frac2iz-i bigg| < 1 $.
Since the expansion of an analytic complex function is unique, this is the Laurent Expansion wanted.
We have the complex function with respect to $z$ :
$$f(z) = frac1z^2+1$$
Note, that to form the factor $z-i$, one can manipulate $f(z)$, as :
$$f(z) = frac1z^2+1 = frac1(z+i)(z-i)=frac1[(z-i)+2i](z-i)$$
$$=$$
$$frac1(z-i)^2big[1+frac2iz-ibig]$$
Recall now, that :
$$frac11+w = sum_n=0^infty (-1)^nw^n, ; ; |w|<1$$
thus, the function can be written as an expansion :
$$f(z) = frac1(z-i)^2cdot frac11+frac2iz-i=frac1(z-i)^2sum_n=0^infty(-1)^nbigg(frac2iz-ibigg)^n$$
$$implies$$
$$f(z) = sum_n=0^infty(-1)^nfrac(2i)^n(z-i)^n+2$$
for $bigg| frac2iz-i bigg| < 1 $.
Since the expansion of an analytic complex function is unique, this is the Laurent Expansion wanted.
edited Jul 16 at 13:11
answered Jul 16 at 12:02
Rebellos
10k21039
10k21039
1
Are you sure $bigg| frac2iz-i bigg| < 1 Leftrightarrow 0 < |z-i| < 2$ ??
– Riemann
Jul 16 at 13:01
add a comment |Â
1
Are you sure $bigg| frac2iz-i bigg| < 1 Leftrightarrow 0 < |z-i| < 2$ ??
– Riemann
Jul 16 at 13:01
1
1
Are you sure $bigg| frac2iz-i bigg| < 1 Leftrightarrow 0 < |z-i| < 2$ ??
– Riemann
Jul 16 at 13:01
Are you sure $bigg| frac2iz-i bigg| < 1 Leftrightarrow 0 < |z-i| < 2$ ??
– Riemann
Jul 16 at 13:01
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853340%2flaurent-expansion-of-frac1z21%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password