Laurent Series $e^frac11-z$, $|z|>1$.
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I tried to find Laurent expansion for:
$e^frac11-z$, $|z|>1$.
I tried next: $frac11-z=-sum_n=1^inftyfrac1z^n$,
then using $e^frac11-z=1+frac11-z+frac12!(1-z)^2+frac13!(1-z)^3+...$
Then I have $e^frac11-z$ = $1$ + $(-frac1z-frac1z^2-frac1z^3-...) + (frac12!)(frac1z^2+frac1z^4+…)+...$ = $1 - frac1z-frac12z^2-...$.
The result is wrong, since in the book the answer is: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5...$
What I did wrong?
complex-analysis laurent-series
add a comment |Â
up vote
0
down vote
favorite
I tried to find Laurent expansion for:
$e^frac11-z$, $|z|>1$.
I tried next: $frac11-z=-sum_n=1^inftyfrac1z^n$,
then using $e^frac11-z=1+frac11-z+frac12!(1-z)^2+frac13!(1-z)^3+...$
Then I have $e^frac11-z$ = $1$ + $(-frac1z-frac1z^2-frac1z^3-...) + (frac12!)(frac1z^2+frac1z^4+…)+...$ = $1 - frac1z-frac12z^2-...$.
The result is wrong, since in the book the answer is: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5...$
What I did wrong?
complex-analysis laurent-series
@DavidC.Ullrich ... Yes, using invalid steps can make any problems easier.
– GEdgar
Jul 30 at 16:56
@GEdgar Omg I can't believe I said that...
– David C. Ullrich
Jul 30 at 17:00
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I tried to find Laurent expansion for:
$e^frac11-z$, $|z|>1$.
I tried next: $frac11-z=-sum_n=1^inftyfrac1z^n$,
then using $e^frac11-z=1+frac11-z+frac12!(1-z)^2+frac13!(1-z)^3+...$
Then I have $e^frac11-z$ = $1$ + $(-frac1z-frac1z^2-frac1z^3-...) + (frac12!)(frac1z^2+frac1z^4+…)+...$ = $1 - frac1z-frac12z^2-...$.
The result is wrong, since in the book the answer is: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5...$
What I did wrong?
complex-analysis laurent-series
I tried to find Laurent expansion for:
$e^frac11-z$, $|z|>1$.
I tried next: $frac11-z=-sum_n=1^inftyfrac1z^n$,
then using $e^frac11-z=1+frac11-z+frac12!(1-z)^2+frac13!(1-z)^3+...$
Then I have $e^frac11-z$ = $1$ + $(-frac1z-frac1z^2-frac1z^3-...) + (frac12!)(frac1z^2+frac1z^4+…)+...$ = $1 - frac1z-frac12z^2-...$.
The result is wrong, since in the book the answer is: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5...$
What I did wrong?
complex-analysis laurent-series
edited Jul 30 at 16:53
David C. Ullrich
53.8k33481
53.8k33481
asked Jul 30 at 16:31
Metso
906
906
@DavidC.Ullrich ... Yes, using invalid steps can make any problems easier.
– GEdgar
Jul 30 at 16:56
@GEdgar Omg I can't believe I said that...
– David C. Ullrich
Jul 30 at 17:00
add a comment |Â
@DavidC.Ullrich ... Yes, using invalid steps can make any problems easier.
– GEdgar
Jul 30 at 16:56
@GEdgar Omg I can't believe I said that...
– David C. Ullrich
Jul 30 at 17:00
@DavidC.Ullrich ... Yes, using invalid steps can make any problems easier.
– GEdgar
Jul 30 at 16:56
@DavidC.Ullrich ... Yes, using invalid steps can make any problems easier.
– GEdgar
Jul 30 at 16:56
@GEdgar Omg I can't believe I said that...
– David C. Ullrich
Jul 30 at 17:00
@GEdgar Omg I can't believe I said that...
– David C. Ullrich
Jul 30 at 17:00
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
With $z=dfrac1w$ we have $|w|<1$ then by $e^z$ expansion
beginalign
e^frac11-z
&= e^frac-w1-w \
&= sum_ngeq0dfrac1n!left(frac-w1-wright)^n \
&= sum_ngeq0dfrac(-w)^nn!left(1-wright)^-n \
&= sum_ngeq0dfrac(-w)^nn!left(1+nw+dfracn(n+1)2w^2+cdotsright) \
&= sum_ngeq0dfrac(-1)^nn!left(w^n+nw^n+1+dfracn(n+1)2w^n+2+cdotsright)
endalign
after calculation some terms we let $w=dfrac1z$.
Edit: One may find
beginalign
&1 \
&-(w+w^2+w^3+w^4+w^5+cdots) \
&+frac12(w^2+2w^3+3w^4+4w^5+cdots) \
&-frac16(w^3+3w^4+6w^5+cdots) \
&+cdots\
&=1-w-fracw^22-fracw^36+fracw^424+frac19 w^5120+cdots\
&=colorblue1-dfrac1z-frac12z^2-frac16z^3+frac124z^4+frac19120z^5+cdots
endalign
the answer in the book: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$. I can't get it.
– Metso
Jul 30 at 18:27
See the series and let $n=0$
– user 108128
Jul 30 at 18:32
so the first is $1$ right?
– user 108128
Jul 30 at 18:33
yes, the first is 1. I'll try other numbers
– Metso
Jul 30 at 18:37
now for $n=1$ it is $-(w+w^2)$
– user 108128
Jul 30 at 18:39
 |Â
show 18 more comments
up vote
2
down vote
Note that$$left(-frac1z-frac1z^2-frac1z^3-frac1z^4-cdotsright)^2=frac1z^2+frac2z^3+frac3z^4+cdots,$$that$$left(-frac1z-frac1z^2-frac1z^3-frac1z^4-cdotsright)^3=-frac1z^3-frac3z^4-frac6z^5-cdots,$$and so on. This explains why you got the wrong result.
sorry, but I can't get the answer from the book. I have again $1 - frac1z-frac12z^2-...$, but not $1 - frac1z+frac12z^2-...$
– Metso
Jul 30 at 17:48
What's the smallest $n$ for which your coefficient of $frac1z^n$ is different from the one from the book?
– José Carlos Santos
Jul 30 at 17:51
the answer: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$ As you can see it starts from $frac12z^2$, $n=2$
– Metso
Jul 30 at 17:52
@Metso You forgot the $frac12!$ that you wrote yourself in the original question.
– José Carlos Santos
Jul 30 at 18:02
result is $1-frac1z -frac12!z^2$
– Metso
Jul 30 at 18:07
 |Â
show 7 more comments
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
With $z=dfrac1w$ we have $|w|<1$ then by $e^z$ expansion
beginalign
e^frac11-z
&= e^frac-w1-w \
&= sum_ngeq0dfrac1n!left(frac-w1-wright)^n \
&= sum_ngeq0dfrac(-w)^nn!left(1-wright)^-n \
&= sum_ngeq0dfrac(-w)^nn!left(1+nw+dfracn(n+1)2w^2+cdotsright) \
&= sum_ngeq0dfrac(-1)^nn!left(w^n+nw^n+1+dfracn(n+1)2w^n+2+cdotsright)
endalign
after calculation some terms we let $w=dfrac1z$.
Edit: One may find
beginalign
&1 \
&-(w+w^2+w^3+w^4+w^5+cdots) \
&+frac12(w^2+2w^3+3w^4+4w^5+cdots) \
&-frac16(w^3+3w^4+6w^5+cdots) \
&+cdots\
&=1-w-fracw^22-fracw^36+fracw^424+frac19 w^5120+cdots\
&=colorblue1-dfrac1z-frac12z^2-frac16z^3+frac124z^4+frac19120z^5+cdots
endalign
the answer in the book: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$. I can't get it.
– Metso
Jul 30 at 18:27
See the series and let $n=0$
– user 108128
Jul 30 at 18:32
so the first is $1$ right?
– user 108128
Jul 30 at 18:33
yes, the first is 1. I'll try other numbers
– Metso
Jul 30 at 18:37
now for $n=1$ it is $-(w+w^2)$
– user 108128
Jul 30 at 18:39
 |Â
show 18 more comments
up vote
1
down vote
accepted
With $z=dfrac1w$ we have $|w|<1$ then by $e^z$ expansion
beginalign
e^frac11-z
&= e^frac-w1-w \
&= sum_ngeq0dfrac1n!left(frac-w1-wright)^n \
&= sum_ngeq0dfrac(-w)^nn!left(1-wright)^-n \
&= sum_ngeq0dfrac(-w)^nn!left(1+nw+dfracn(n+1)2w^2+cdotsright) \
&= sum_ngeq0dfrac(-1)^nn!left(w^n+nw^n+1+dfracn(n+1)2w^n+2+cdotsright)
endalign
after calculation some terms we let $w=dfrac1z$.
Edit: One may find
beginalign
&1 \
&-(w+w^2+w^3+w^4+w^5+cdots) \
&+frac12(w^2+2w^3+3w^4+4w^5+cdots) \
&-frac16(w^3+3w^4+6w^5+cdots) \
&+cdots\
&=1-w-fracw^22-fracw^36+fracw^424+frac19 w^5120+cdots\
&=colorblue1-dfrac1z-frac12z^2-frac16z^3+frac124z^4+frac19120z^5+cdots
endalign
the answer in the book: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$. I can't get it.
– Metso
Jul 30 at 18:27
See the series and let $n=0$
– user 108128
Jul 30 at 18:32
so the first is $1$ right?
– user 108128
Jul 30 at 18:33
yes, the first is 1. I'll try other numbers
– Metso
Jul 30 at 18:37
now for $n=1$ it is $-(w+w^2)$
– user 108128
Jul 30 at 18:39
 |Â
show 18 more comments
up vote
1
down vote
accepted
up vote
1
down vote
accepted
With $z=dfrac1w$ we have $|w|<1$ then by $e^z$ expansion
beginalign
e^frac11-z
&= e^frac-w1-w \
&= sum_ngeq0dfrac1n!left(frac-w1-wright)^n \
&= sum_ngeq0dfrac(-w)^nn!left(1-wright)^-n \
&= sum_ngeq0dfrac(-w)^nn!left(1+nw+dfracn(n+1)2w^2+cdotsright) \
&= sum_ngeq0dfrac(-1)^nn!left(w^n+nw^n+1+dfracn(n+1)2w^n+2+cdotsright)
endalign
after calculation some terms we let $w=dfrac1z$.
Edit: One may find
beginalign
&1 \
&-(w+w^2+w^3+w^4+w^5+cdots) \
&+frac12(w^2+2w^3+3w^4+4w^5+cdots) \
&-frac16(w^3+3w^4+6w^5+cdots) \
&+cdots\
&=1-w-fracw^22-fracw^36+fracw^424+frac19 w^5120+cdots\
&=colorblue1-dfrac1z-frac12z^2-frac16z^3+frac124z^4+frac19120z^5+cdots
endalign
With $z=dfrac1w$ we have $|w|<1$ then by $e^z$ expansion
beginalign
e^frac11-z
&= e^frac-w1-w \
&= sum_ngeq0dfrac1n!left(frac-w1-wright)^n \
&= sum_ngeq0dfrac(-w)^nn!left(1-wright)^-n \
&= sum_ngeq0dfrac(-w)^nn!left(1+nw+dfracn(n+1)2w^2+cdotsright) \
&= sum_ngeq0dfrac(-1)^nn!left(w^n+nw^n+1+dfracn(n+1)2w^n+2+cdotsright)
endalign
after calculation some terms we let $w=dfrac1z$.
Edit: One may find
beginalign
&1 \
&-(w+w^2+w^3+w^4+w^5+cdots) \
&+frac12(w^2+2w^3+3w^4+4w^5+cdots) \
&-frac16(w^3+3w^4+6w^5+cdots) \
&+cdots\
&=1-w-fracw^22-fracw^36+fracw^424+frac19 w^5120+cdots\
&=colorblue1-dfrac1z-frac12z^2-frac16z^3+frac124z^4+frac19120z^5+cdots
endalign
edited Jul 30 at 19:27
answered Jul 30 at 18:02
user 108128
19k41544
19k41544
the answer in the book: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$. I can't get it.
– Metso
Jul 30 at 18:27
See the series and let $n=0$
– user 108128
Jul 30 at 18:32
so the first is $1$ right?
– user 108128
Jul 30 at 18:33
yes, the first is 1. I'll try other numbers
– Metso
Jul 30 at 18:37
now for $n=1$ it is $-(w+w^2)$
– user 108128
Jul 30 at 18:39
 |Â
show 18 more comments
the answer in the book: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$. I can't get it.
– Metso
Jul 30 at 18:27
See the series and let $n=0$
– user 108128
Jul 30 at 18:32
so the first is $1$ right?
– user 108128
Jul 30 at 18:33
yes, the first is 1. I'll try other numbers
– Metso
Jul 30 at 18:37
now for $n=1$ it is $-(w+w^2)$
– user 108128
Jul 30 at 18:39
the answer in the book: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$. I can't get it.
– Metso
Jul 30 at 18:27
the answer in the book: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$. I can't get it.
– Metso
Jul 30 at 18:27
See the series and let $n=0$
– user 108128
Jul 30 at 18:32
See the series and let $n=0$
– user 108128
Jul 30 at 18:32
so the first is $1$ right?
– user 108128
Jul 30 at 18:33
so the first is $1$ right?
– user 108128
Jul 30 at 18:33
yes, the first is 1. I'll try other numbers
– Metso
Jul 30 at 18:37
yes, the first is 1. I'll try other numbers
– Metso
Jul 30 at 18:37
now for $n=1$ it is $-(w+w^2)$
– user 108128
Jul 30 at 18:39
now for $n=1$ it is $-(w+w^2)$
– user 108128
Jul 30 at 18:39
 |Â
show 18 more comments
up vote
2
down vote
Note that$$left(-frac1z-frac1z^2-frac1z^3-frac1z^4-cdotsright)^2=frac1z^2+frac2z^3+frac3z^4+cdots,$$that$$left(-frac1z-frac1z^2-frac1z^3-frac1z^4-cdotsright)^3=-frac1z^3-frac3z^4-frac6z^5-cdots,$$and so on. This explains why you got the wrong result.
sorry, but I can't get the answer from the book. I have again $1 - frac1z-frac12z^2-...$, but not $1 - frac1z+frac12z^2-...$
– Metso
Jul 30 at 17:48
What's the smallest $n$ for which your coefficient of $frac1z^n$ is different from the one from the book?
– José Carlos Santos
Jul 30 at 17:51
the answer: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$ As you can see it starts from $frac12z^2$, $n=2$
– Metso
Jul 30 at 17:52
@Metso You forgot the $frac12!$ that you wrote yourself in the original question.
– José Carlos Santos
Jul 30 at 18:02
result is $1-frac1z -frac12!z^2$
– Metso
Jul 30 at 18:07
 |Â
show 7 more comments
up vote
2
down vote
Note that$$left(-frac1z-frac1z^2-frac1z^3-frac1z^4-cdotsright)^2=frac1z^2+frac2z^3+frac3z^4+cdots,$$that$$left(-frac1z-frac1z^2-frac1z^3-frac1z^4-cdotsright)^3=-frac1z^3-frac3z^4-frac6z^5-cdots,$$and so on. This explains why you got the wrong result.
sorry, but I can't get the answer from the book. I have again $1 - frac1z-frac12z^2-...$, but not $1 - frac1z+frac12z^2-...$
– Metso
Jul 30 at 17:48
What's the smallest $n$ for which your coefficient of $frac1z^n$ is different from the one from the book?
– José Carlos Santos
Jul 30 at 17:51
the answer: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$ As you can see it starts from $frac12z^2$, $n=2$
– Metso
Jul 30 at 17:52
@Metso You forgot the $frac12!$ that you wrote yourself in the original question.
– José Carlos Santos
Jul 30 at 18:02
result is $1-frac1z -frac12!z^2$
– Metso
Jul 30 at 18:07
 |Â
show 7 more comments
up vote
2
down vote
up vote
2
down vote
Note that$$left(-frac1z-frac1z^2-frac1z^3-frac1z^4-cdotsright)^2=frac1z^2+frac2z^3+frac3z^4+cdots,$$that$$left(-frac1z-frac1z^2-frac1z^3-frac1z^4-cdotsright)^3=-frac1z^3-frac3z^4-frac6z^5-cdots,$$and so on. This explains why you got the wrong result.
Note that$$left(-frac1z-frac1z^2-frac1z^3-frac1z^4-cdotsright)^2=frac1z^2+frac2z^3+frac3z^4+cdots,$$that$$left(-frac1z-frac1z^2-frac1z^3-frac1z^4-cdotsright)^3=-frac1z^3-frac3z^4-frac6z^5-cdots,$$and so on. This explains why you got the wrong result.
answered Jul 30 at 16:42


José Carlos Santos
112k1696172
112k1696172
sorry, but I can't get the answer from the book. I have again $1 - frac1z-frac12z^2-...$, but not $1 - frac1z+frac12z^2-...$
– Metso
Jul 30 at 17:48
What's the smallest $n$ for which your coefficient of $frac1z^n$ is different from the one from the book?
– José Carlos Santos
Jul 30 at 17:51
the answer: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$ As you can see it starts from $frac12z^2$, $n=2$
– Metso
Jul 30 at 17:52
@Metso You forgot the $frac12!$ that you wrote yourself in the original question.
– José Carlos Santos
Jul 30 at 18:02
result is $1-frac1z -frac12!z^2$
– Metso
Jul 30 at 18:07
 |Â
show 7 more comments
sorry, but I can't get the answer from the book. I have again $1 - frac1z-frac12z^2-...$, but not $1 - frac1z+frac12z^2-...$
– Metso
Jul 30 at 17:48
What's the smallest $n$ for which your coefficient of $frac1z^n$ is different from the one from the book?
– José Carlos Santos
Jul 30 at 17:51
the answer: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$ As you can see it starts from $frac12z^2$, $n=2$
– Metso
Jul 30 at 17:52
@Metso You forgot the $frac12!$ that you wrote yourself in the original question.
– José Carlos Santos
Jul 30 at 18:02
result is $1-frac1z -frac12!z^2$
– Metso
Jul 30 at 18:07
sorry, but I can't get the answer from the book. I have again $1 - frac1z-frac12z^2-...$, but not $1 - frac1z+frac12z^2-...$
– Metso
Jul 30 at 17:48
sorry, but I can't get the answer from the book. I have again $1 - frac1z-frac12z^2-...$, but not $1 - frac1z+frac12z^2-...$
– Metso
Jul 30 at 17:48
What's the smallest $n$ for which your coefficient of $frac1z^n$ is different from the one from the book?
– José Carlos Santos
Jul 30 at 17:51
What's the smallest $n$ for which your coefficient of $frac1z^n$ is different from the one from the book?
– José Carlos Santos
Jul 30 at 17:51
the answer: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$ As you can see it starts from $frac12z^2$, $n=2$
– Metso
Jul 30 at 17:52
the answer: $1 - frac1z+ frac12z^2-frac16z^3+frac124z^4-frac19120z^5…$ As you can see it starts from $frac12z^2$, $n=2$
– Metso
Jul 30 at 17:52
@Metso You forgot the $frac12!$ that you wrote yourself in the original question.
– José Carlos Santos
Jul 30 at 18:02
@Metso You forgot the $frac12!$ that you wrote yourself in the original question.
– José Carlos Santos
Jul 30 at 18:02
result is $1-frac1z -frac12!z^2$
– Metso
Jul 30 at 18:07
result is $1-frac1z -frac12!z^2$
– Metso
Jul 30 at 18:07
 |Â
show 7 more comments
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867175%2flaurent-series-e-frac11-z-z1%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
@DavidC.Ullrich ... Yes, using invalid steps can make any problems easier.
– GEdgar
Jul 30 at 16:56
@GEdgar Omg I can't believe I said that...
– David C. Ullrich
Jul 30 at 17:00