Looking for an example of a local homomorphism between regular and CM rings
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I am looking for a concrete example of a regular local ring $(R,m)$,
a Cohen-Macaulay local ring $(S,n)$ which is not Gorenstein, and a local homomorphism $(R,m) to (S,n)$ which is not flat.
commutative-algebra homological-algebra
add a comment |Â
up vote
0
down vote
favorite
I am looking for a concrete example of a regular local ring $(R,m)$,
a Cohen-Macaulay local ring $(S,n)$ which is not Gorenstein, and a local homomorphism $(R,m) to (S,n)$ which is not flat.
commutative-algebra homological-algebra
Take $R=k[[x_1,x_2,x_3,x_4]]$, $k$ any field. Take $S=k[[t^3,t^2u, tu^2,u^3]]$ with the map $x_1mapsto t^3, x_2mapsto t^2u$ etc.
– Mohan
Jul 30 at 15:05
Also, one can take $R = k[[x,y]]$, where $k$ is a field, and $S = k[[x,y]]/(x^2,xy,y^2)$.
– Youngsu
Jul 30 at 19:22
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I am looking for a concrete example of a regular local ring $(R,m)$,
a Cohen-Macaulay local ring $(S,n)$ which is not Gorenstein, and a local homomorphism $(R,m) to (S,n)$ which is not flat.
commutative-algebra homological-algebra
I am looking for a concrete example of a regular local ring $(R,m)$,
a Cohen-Macaulay local ring $(S,n)$ which is not Gorenstein, and a local homomorphism $(R,m) to (S,n)$ which is not flat.
commutative-algebra homological-algebra
asked Jul 30 at 13:53
General Journal
111
111
Take $R=k[[x_1,x_2,x_3,x_4]]$, $k$ any field. Take $S=k[[t^3,t^2u, tu^2,u^3]]$ with the map $x_1mapsto t^3, x_2mapsto t^2u$ etc.
– Mohan
Jul 30 at 15:05
Also, one can take $R = k[[x,y]]$, where $k$ is a field, and $S = k[[x,y]]/(x^2,xy,y^2)$.
– Youngsu
Jul 30 at 19:22
add a comment |Â
Take $R=k[[x_1,x_2,x_3,x_4]]$, $k$ any field. Take $S=k[[t^3,t^2u, tu^2,u^3]]$ with the map $x_1mapsto t^3, x_2mapsto t^2u$ etc.
– Mohan
Jul 30 at 15:05
Also, one can take $R = k[[x,y]]$, where $k$ is a field, and $S = k[[x,y]]/(x^2,xy,y^2)$.
– Youngsu
Jul 30 at 19:22
Take $R=k[[x_1,x_2,x_3,x_4]]$, $k$ any field. Take $S=k[[t^3,t^2u, tu^2,u^3]]$ with the map $x_1mapsto t^3, x_2mapsto t^2u$ etc.
– Mohan
Jul 30 at 15:05
Take $R=k[[x_1,x_2,x_3,x_4]]$, $k$ any field. Take $S=k[[t^3,t^2u, tu^2,u^3]]$ with the map $x_1mapsto t^3, x_2mapsto t^2u$ etc.
– Mohan
Jul 30 at 15:05
Also, one can take $R = k[[x,y]]$, where $k$ is a field, and $S = k[[x,y]]/(x^2,xy,y^2)$.
– Youngsu
Jul 30 at 19:22
Also, one can take $R = k[[x,y]]$, where $k$ is a field, and $S = k[[x,y]]/(x^2,xy,y^2)$.
– Youngsu
Jul 30 at 19:22
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867047%2flooking-for-an-example-of-a-local-homomorphism-between-regular-and-cm-rings%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Take $R=k[[x_1,x_2,x_3,x_4]]$, $k$ any field. Take $S=k[[t^3,t^2u, tu^2,u^3]]$ with the map $x_1mapsto t^3, x_2mapsto t^2u$ etc.
– Mohan
Jul 30 at 15:05
Also, one can take $R = k[[x,y]]$, where $k$ is a field, and $S = k[[x,y]]/(x^2,xy,y^2)$.
– Youngsu
Jul 30 at 19:22