Looking for an example of a local homomorphism between regular and CM rings

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












I am looking for a concrete example of a regular local ring $(R,m)$,
a Cohen-Macaulay local ring $(S,n)$ which is not Gorenstein, and a local homomorphism $(R,m) to (S,n)$ which is not flat.







share|cite|improve this question



















  • Take $R=k[[x_1,x_2,x_3,x_4]]$, $k$ any field. Take $S=k[[t^3,t^2u, tu^2,u^3]]$ with the map $x_1mapsto t^3, x_2mapsto t^2u$ etc.
    – Mohan
    Jul 30 at 15:05










  • Also, one can take $R = k[[x,y]]$, where $k$ is a field, and $S = k[[x,y]]/(x^2,xy,y^2)$.
    – Youngsu
    Jul 30 at 19:22














up vote
0
down vote

favorite
1












I am looking for a concrete example of a regular local ring $(R,m)$,
a Cohen-Macaulay local ring $(S,n)$ which is not Gorenstein, and a local homomorphism $(R,m) to (S,n)$ which is not flat.







share|cite|improve this question



















  • Take $R=k[[x_1,x_2,x_3,x_4]]$, $k$ any field. Take $S=k[[t^3,t^2u, tu^2,u^3]]$ with the map $x_1mapsto t^3, x_2mapsto t^2u$ etc.
    – Mohan
    Jul 30 at 15:05










  • Also, one can take $R = k[[x,y]]$, where $k$ is a field, and $S = k[[x,y]]/(x^2,xy,y^2)$.
    – Youngsu
    Jul 30 at 19:22












up vote
0
down vote

favorite
1









up vote
0
down vote

favorite
1






1





I am looking for a concrete example of a regular local ring $(R,m)$,
a Cohen-Macaulay local ring $(S,n)$ which is not Gorenstein, and a local homomorphism $(R,m) to (S,n)$ which is not flat.







share|cite|improve this question











I am looking for a concrete example of a regular local ring $(R,m)$,
a Cohen-Macaulay local ring $(S,n)$ which is not Gorenstein, and a local homomorphism $(R,m) to (S,n)$ which is not flat.









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 30 at 13:53









General Journal

111




111











  • Take $R=k[[x_1,x_2,x_3,x_4]]$, $k$ any field. Take $S=k[[t^3,t^2u, tu^2,u^3]]$ with the map $x_1mapsto t^3, x_2mapsto t^2u$ etc.
    – Mohan
    Jul 30 at 15:05










  • Also, one can take $R = k[[x,y]]$, where $k$ is a field, and $S = k[[x,y]]/(x^2,xy,y^2)$.
    – Youngsu
    Jul 30 at 19:22
















  • Take $R=k[[x_1,x_2,x_3,x_4]]$, $k$ any field. Take $S=k[[t^3,t^2u, tu^2,u^3]]$ with the map $x_1mapsto t^3, x_2mapsto t^2u$ etc.
    – Mohan
    Jul 30 at 15:05










  • Also, one can take $R = k[[x,y]]$, where $k$ is a field, and $S = k[[x,y]]/(x^2,xy,y^2)$.
    – Youngsu
    Jul 30 at 19:22















Take $R=k[[x_1,x_2,x_3,x_4]]$, $k$ any field. Take $S=k[[t^3,t^2u, tu^2,u^3]]$ with the map $x_1mapsto t^3, x_2mapsto t^2u$ etc.
– Mohan
Jul 30 at 15:05




Take $R=k[[x_1,x_2,x_3,x_4]]$, $k$ any field. Take $S=k[[t^3,t^2u, tu^2,u^3]]$ with the map $x_1mapsto t^3, x_2mapsto t^2u$ etc.
– Mohan
Jul 30 at 15:05












Also, one can take $R = k[[x,y]]$, where $k$ is a field, and $S = k[[x,y]]/(x^2,xy,y^2)$.
– Youngsu
Jul 30 at 19:22




Also, one can take $R = k[[x,y]]$, where $k$ is a field, and $S = k[[x,y]]/(x^2,xy,y^2)$.
– Youngsu
Jul 30 at 19:22















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867047%2flooking-for-an-example-of-a-local-homomorphism-between-regular-and-cm-rings%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867047%2flooking-for-an-example-of-a-local-homomorphism-between-regular-and-cm-rings%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?