Prove that $limlimits_xto 1^-f(x)=-1+ln 4$ where $f(x)=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Prove that $limlimits_xto 1^-f(x)=-1+ln 4$ where $$f(x)=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1).$$
My trial:
Since the series converges absolutely on $[-1,1]$, then it is uniformly convergent on $[-1,1].$ So,
$$f(x)=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)$$
$$=sum_n=1^infty(-1)^n-1x^n+1Big[frac1n-frac1n+1Big]$$
$$=sum_n=1^infty(-1)^n-1fracx^n+1n-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xsum_n=1^infty(-1)^nfracx^nn-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xsum_n=0^infty(-1)^n+1fracx^n+1n+1-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xBig[sum_n=0^infty(-1)^n+1fracx^n+1n+1-x+xBig]-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xBig[sum_n=1^infty(-1)^n+1fracx^n+1n+1-xBig]-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xBig[sum_n=1^infty(-1)^n+1fracx^n+1n+1-xBig]-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=1-Big(frac1x+1Big)ln(1+x)$$
So, $$limlimits_xto 1^-f(x)=1-ln 4.$$
Please, where am I missing it? Better solutions will be accepted.
real-analysis sequences-and-series analysis limits continuity
add a comment |Â
up vote
0
down vote
favorite
Prove that $limlimits_xto 1^-f(x)=-1+ln 4$ where $$f(x)=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1).$$
My trial:
Since the series converges absolutely on $[-1,1]$, then it is uniformly convergent on $[-1,1].$ So,
$$f(x)=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)$$
$$=sum_n=1^infty(-1)^n-1x^n+1Big[frac1n-frac1n+1Big]$$
$$=sum_n=1^infty(-1)^n-1fracx^n+1n-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xsum_n=1^infty(-1)^nfracx^nn-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xsum_n=0^infty(-1)^n+1fracx^n+1n+1-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xBig[sum_n=0^infty(-1)^n+1fracx^n+1n+1-x+xBig]-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xBig[sum_n=1^infty(-1)^n+1fracx^n+1n+1-xBig]-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xBig[sum_n=1^infty(-1)^n+1fracx^n+1n+1-xBig]-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=1-Big(frac1x+1Big)ln(1+x)$$
So, $$limlimits_xto 1^-f(x)=1-ln 4.$$
Please, where am I missing it? Better solutions will be accepted.
real-analysis sequences-and-series analysis limits continuity
2
"Better solutions will be accepted", hurray ;)
– Nosrati
Jul 18 at 8:01
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Prove that $limlimits_xto 1^-f(x)=-1+ln 4$ where $$f(x)=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1).$$
My trial:
Since the series converges absolutely on $[-1,1]$, then it is uniformly convergent on $[-1,1].$ So,
$$f(x)=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)$$
$$=sum_n=1^infty(-1)^n-1x^n+1Big[frac1n-frac1n+1Big]$$
$$=sum_n=1^infty(-1)^n-1fracx^n+1n-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xsum_n=1^infty(-1)^nfracx^nn-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xsum_n=0^infty(-1)^n+1fracx^n+1n+1-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xBig[sum_n=0^infty(-1)^n+1fracx^n+1n+1-x+xBig]-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xBig[sum_n=1^infty(-1)^n+1fracx^n+1n+1-xBig]-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xBig[sum_n=1^infty(-1)^n+1fracx^n+1n+1-xBig]-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=1-Big(frac1x+1Big)ln(1+x)$$
So, $$limlimits_xto 1^-f(x)=1-ln 4.$$
Please, where am I missing it? Better solutions will be accepted.
real-analysis sequences-and-series analysis limits continuity
Prove that $limlimits_xto 1^-f(x)=-1+ln 4$ where $$f(x)=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1).$$
My trial:
Since the series converges absolutely on $[-1,1]$, then it is uniformly convergent on $[-1,1].$ So,
$$f(x)=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)$$
$$=sum_n=1^infty(-1)^n-1x^n+1Big[frac1n-frac1n+1Big]$$
$$=sum_n=1^infty(-1)^n-1fracx^n+1n-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xsum_n=1^infty(-1)^nfracx^nn-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xsum_n=0^infty(-1)^n+1fracx^n+1n+1-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xBig[sum_n=0^infty(-1)^n+1fracx^n+1n+1-x+xBig]-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xBig[sum_n=1^infty(-1)^n+1fracx^n+1n+1-xBig]-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=-frac1xBig[sum_n=1^infty(-1)^n+1fracx^n+1n+1-xBig]-sum_n=1^infty(-1)^n-1fracx^n+1n+1$$
$$=1-Big(frac1x+1Big)ln(1+x)$$
So, $$limlimits_xto 1^-f(x)=1-ln 4.$$
Please, where am I missing it? Better solutions will be accepted.
real-analysis sequences-and-series analysis limits continuity
asked Jul 18 at 7:31
Mike
72912
72912
2
"Better solutions will be accepted", hurray ;)
– Nosrati
Jul 18 at 8:01
add a comment |Â
2
"Better solutions will be accepted", hurray ;)
– Nosrati
Jul 18 at 8:01
2
2
"Better solutions will be accepted", hurray ;)
– Nosrati
Jul 18 at 8:01
"Better solutions will be accepted", hurray ;)
– Nosrati
Jul 18 at 8:01
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
2
down vote
accepted
I rewrite part of yours:
beginalign
f(x)
&=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)\
&=sum_n=1^infty(-1)^n-1x^n+1Big[frac1n-frac1n+1Big]\
&=sum_n=1^infty(-1)^n-1fracx^n+1n-sum_n=1^infty(-1)^n-1fracx^n+1n+1\
&=xsum_n=1^infty(-1)^n-1fracx^nn+sum_n=1^infty(-1)^nfracx^n+1n+1+x-x\
&=xleft(sum_n=1^infty(-1)^n-1fracx^nnright)+left(sum_n=1^infty(-1)^n-1fracx^nnright)-x\
&=(1+x)ln(1+x)-x
endalign
Oh, my bad! So, I should have done this instead! Thanks always!
– Mike
Jul 18 at 9:44
add a comment |Â
up vote
1
down vote
$ln (1+x)=x-x^2/2+... $ but you are writing $ln (1+x)=x^2/2-x^3/3... $. All your calculations are fine except for this mistake at the end. BTW you can take the limit inside the sum right in the beginning (and get rid of $x$) because of uniform convergence).
add a comment |Â
up vote
1
down vote
It's not hard to see that $f$ is infinitely many times differentiable in $(-1,1)$ (use ratio test) therefore $$f''(x)=sum_n=1^infty(-x)^n-1=dfrac11+x$$therefore $$f'(x)=ln(1+x)+C_1$$and $$f(x)=(1+x)ln(1+x)-1-x+C_1x+C_2$$and we know that $$C_1=C_2=0$$therefore $$lim_xto1^-f(x)=2ln2-1$$
add a comment |Â
up vote
1
down vote
A Different Approach
$$
beginalign
lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)
&=lim_xto1^-sum_n=1^inftyfracx^2n(2n-1)2n
-lim_xto1^-sum_n=1^inftyfracx^2n+12n(2n+1)tag1\
&=sum_n=1^inftyfrac1(2n-1)2n
-sum_n=1^inftyfrac12n(2n+1)tag2\
&=sum_n=1^inftyleft(frac12n-1-frac22n+frac12n+1right)tag3\
&=sum_n=1^inftyleft(frac22n-1-frac22nright)-sum_n=1^inftyleft(frac12n-1-frac12n+1right)tag4\[9pt]
&=2log(2)-1tag5
endalign
$$
Explanation:
$(1)$: separate the series into the difference of the even and the odd terms
$(2)$: apply monotone or dominated convergence to both sums (either works)
$(3)$: partial fractions
$(4)$: separate the series into the difference of two convergent series
$(5)$: the series on the left is twice the alternating harmonic series
$phantom(5)text:$ the series on the right telescopes
A Modification of the Approach in the Question
$$
beginalign
lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)
&=lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n-lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n+1tag6\
&=lim_xto1^-xlog(1+x)-lim_xto1^-(1-log(1+x))tag7\[6pt]
&=2log(2)-1tag8
endalign
$$
Explanation:
$(6)$: partial fractions, then separate into two convergent series
$(7)$: the series converge absolutely to $log(1+x)$ for $xlt1$
$(8)$: evaluate at $x=1$
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
I rewrite part of yours:
beginalign
f(x)
&=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)\
&=sum_n=1^infty(-1)^n-1x^n+1Big[frac1n-frac1n+1Big]\
&=sum_n=1^infty(-1)^n-1fracx^n+1n-sum_n=1^infty(-1)^n-1fracx^n+1n+1\
&=xsum_n=1^infty(-1)^n-1fracx^nn+sum_n=1^infty(-1)^nfracx^n+1n+1+x-x\
&=xleft(sum_n=1^infty(-1)^n-1fracx^nnright)+left(sum_n=1^infty(-1)^n-1fracx^nnright)-x\
&=(1+x)ln(1+x)-x
endalign
Oh, my bad! So, I should have done this instead! Thanks always!
– Mike
Jul 18 at 9:44
add a comment |Â
up vote
2
down vote
accepted
I rewrite part of yours:
beginalign
f(x)
&=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)\
&=sum_n=1^infty(-1)^n-1x^n+1Big[frac1n-frac1n+1Big]\
&=sum_n=1^infty(-1)^n-1fracx^n+1n-sum_n=1^infty(-1)^n-1fracx^n+1n+1\
&=xsum_n=1^infty(-1)^n-1fracx^nn+sum_n=1^infty(-1)^nfracx^n+1n+1+x-x\
&=xleft(sum_n=1^infty(-1)^n-1fracx^nnright)+left(sum_n=1^infty(-1)^n-1fracx^nnright)-x\
&=(1+x)ln(1+x)-x
endalign
Oh, my bad! So, I should have done this instead! Thanks always!
– Mike
Jul 18 at 9:44
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
I rewrite part of yours:
beginalign
f(x)
&=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)\
&=sum_n=1^infty(-1)^n-1x^n+1Big[frac1n-frac1n+1Big]\
&=sum_n=1^infty(-1)^n-1fracx^n+1n-sum_n=1^infty(-1)^n-1fracx^n+1n+1\
&=xsum_n=1^infty(-1)^n-1fracx^nn+sum_n=1^infty(-1)^nfracx^n+1n+1+x-x\
&=xleft(sum_n=1^infty(-1)^n-1fracx^nnright)+left(sum_n=1^infty(-1)^n-1fracx^nnright)-x\
&=(1+x)ln(1+x)-x
endalign
I rewrite part of yours:
beginalign
f(x)
&=sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)\
&=sum_n=1^infty(-1)^n-1x^n+1Big[frac1n-frac1n+1Big]\
&=sum_n=1^infty(-1)^n-1fracx^n+1n-sum_n=1^infty(-1)^n-1fracx^n+1n+1\
&=xsum_n=1^infty(-1)^n-1fracx^nn+sum_n=1^infty(-1)^nfracx^n+1n+1+x-x\
&=xleft(sum_n=1^infty(-1)^n-1fracx^nnright)+left(sum_n=1^infty(-1)^n-1fracx^nnright)-x\
&=(1+x)ln(1+x)-x
endalign
answered Jul 18 at 8:14


Nosrati
19.7k41644
19.7k41644
Oh, my bad! So, I should have done this instead! Thanks always!
– Mike
Jul 18 at 9:44
add a comment |Â
Oh, my bad! So, I should have done this instead! Thanks always!
– Mike
Jul 18 at 9:44
Oh, my bad! So, I should have done this instead! Thanks always!
– Mike
Jul 18 at 9:44
Oh, my bad! So, I should have done this instead! Thanks always!
– Mike
Jul 18 at 9:44
add a comment |Â
up vote
1
down vote
$ln (1+x)=x-x^2/2+... $ but you are writing $ln (1+x)=x^2/2-x^3/3... $. All your calculations are fine except for this mistake at the end. BTW you can take the limit inside the sum right in the beginning (and get rid of $x$) because of uniform convergence).
add a comment |Â
up vote
1
down vote
$ln (1+x)=x-x^2/2+... $ but you are writing $ln (1+x)=x^2/2-x^3/3... $. All your calculations are fine except for this mistake at the end. BTW you can take the limit inside the sum right in the beginning (and get rid of $x$) because of uniform convergence).
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$ln (1+x)=x-x^2/2+... $ but you are writing $ln (1+x)=x^2/2-x^3/3... $. All your calculations are fine except for this mistake at the end. BTW you can take the limit inside the sum right in the beginning (and get rid of $x$) because of uniform convergence).
$ln (1+x)=x-x^2/2+... $ but you are writing $ln (1+x)=x^2/2-x^3/3... $. All your calculations are fine except for this mistake at the end. BTW you can take the limit inside the sum right in the beginning (and get rid of $x$) because of uniform convergence).
edited Jul 18 at 8:03
answered Jul 18 at 7:42


Kavi Rama Murthy
20.8k2829
20.8k2829
add a comment |Â
add a comment |Â
up vote
1
down vote
It's not hard to see that $f$ is infinitely many times differentiable in $(-1,1)$ (use ratio test) therefore $$f''(x)=sum_n=1^infty(-x)^n-1=dfrac11+x$$therefore $$f'(x)=ln(1+x)+C_1$$and $$f(x)=(1+x)ln(1+x)-1-x+C_1x+C_2$$and we know that $$C_1=C_2=0$$therefore $$lim_xto1^-f(x)=2ln2-1$$
add a comment |Â
up vote
1
down vote
It's not hard to see that $f$ is infinitely many times differentiable in $(-1,1)$ (use ratio test) therefore $$f''(x)=sum_n=1^infty(-x)^n-1=dfrac11+x$$therefore $$f'(x)=ln(1+x)+C_1$$and $$f(x)=(1+x)ln(1+x)-1-x+C_1x+C_2$$and we know that $$C_1=C_2=0$$therefore $$lim_xto1^-f(x)=2ln2-1$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
It's not hard to see that $f$ is infinitely many times differentiable in $(-1,1)$ (use ratio test) therefore $$f''(x)=sum_n=1^infty(-x)^n-1=dfrac11+x$$therefore $$f'(x)=ln(1+x)+C_1$$and $$f(x)=(1+x)ln(1+x)-1-x+C_1x+C_2$$and we know that $$C_1=C_2=0$$therefore $$lim_xto1^-f(x)=2ln2-1$$
It's not hard to see that $f$ is infinitely many times differentiable in $(-1,1)$ (use ratio test) therefore $$f''(x)=sum_n=1^infty(-x)^n-1=dfrac11+x$$therefore $$f'(x)=ln(1+x)+C_1$$and $$f(x)=(1+x)ln(1+x)-1-x+C_1x+C_2$$and we know that $$C_1=C_2=0$$therefore $$lim_xto1^-f(x)=2ln2-1$$
answered Jul 18 at 8:35


Mostafa Ayaz
8,6023630
8,6023630
add a comment |Â
add a comment |Â
up vote
1
down vote
A Different Approach
$$
beginalign
lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)
&=lim_xto1^-sum_n=1^inftyfracx^2n(2n-1)2n
-lim_xto1^-sum_n=1^inftyfracx^2n+12n(2n+1)tag1\
&=sum_n=1^inftyfrac1(2n-1)2n
-sum_n=1^inftyfrac12n(2n+1)tag2\
&=sum_n=1^inftyleft(frac12n-1-frac22n+frac12n+1right)tag3\
&=sum_n=1^inftyleft(frac22n-1-frac22nright)-sum_n=1^inftyleft(frac12n-1-frac12n+1right)tag4\[9pt]
&=2log(2)-1tag5
endalign
$$
Explanation:
$(1)$: separate the series into the difference of the even and the odd terms
$(2)$: apply monotone or dominated convergence to both sums (either works)
$(3)$: partial fractions
$(4)$: separate the series into the difference of two convergent series
$(5)$: the series on the left is twice the alternating harmonic series
$phantom(5)text:$ the series on the right telescopes
A Modification of the Approach in the Question
$$
beginalign
lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)
&=lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n-lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n+1tag6\
&=lim_xto1^-xlog(1+x)-lim_xto1^-(1-log(1+x))tag7\[6pt]
&=2log(2)-1tag8
endalign
$$
Explanation:
$(6)$: partial fractions, then separate into two convergent series
$(7)$: the series converge absolutely to $log(1+x)$ for $xlt1$
$(8)$: evaluate at $x=1$
add a comment |Â
up vote
1
down vote
A Different Approach
$$
beginalign
lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)
&=lim_xto1^-sum_n=1^inftyfracx^2n(2n-1)2n
-lim_xto1^-sum_n=1^inftyfracx^2n+12n(2n+1)tag1\
&=sum_n=1^inftyfrac1(2n-1)2n
-sum_n=1^inftyfrac12n(2n+1)tag2\
&=sum_n=1^inftyleft(frac12n-1-frac22n+frac12n+1right)tag3\
&=sum_n=1^inftyleft(frac22n-1-frac22nright)-sum_n=1^inftyleft(frac12n-1-frac12n+1right)tag4\[9pt]
&=2log(2)-1tag5
endalign
$$
Explanation:
$(1)$: separate the series into the difference of the even and the odd terms
$(2)$: apply monotone or dominated convergence to both sums (either works)
$(3)$: partial fractions
$(4)$: separate the series into the difference of two convergent series
$(5)$: the series on the left is twice the alternating harmonic series
$phantom(5)text:$ the series on the right telescopes
A Modification of the Approach in the Question
$$
beginalign
lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)
&=lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n-lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n+1tag6\
&=lim_xto1^-xlog(1+x)-lim_xto1^-(1-log(1+x))tag7\[6pt]
&=2log(2)-1tag8
endalign
$$
Explanation:
$(6)$: partial fractions, then separate into two convergent series
$(7)$: the series converge absolutely to $log(1+x)$ for $xlt1$
$(8)$: evaluate at $x=1$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
A Different Approach
$$
beginalign
lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)
&=lim_xto1^-sum_n=1^inftyfracx^2n(2n-1)2n
-lim_xto1^-sum_n=1^inftyfracx^2n+12n(2n+1)tag1\
&=sum_n=1^inftyfrac1(2n-1)2n
-sum_n=1^inftyfrac12n(2n+1)tag2\
&=sum_n=1^inftyleft(frac12n-1-frac22n+frac12n+1right)tag3\
&=sum_n=1^inftyleft(frac22n-1-frac22nright)-sum_n=1^inftyleft(frac12n-1-frac12n+1right)tag4\[9pt]
&=2log(2)-1tag5
endalign
$$
Explanation:
$(1)$: separate the series into the difference of the even and the odd terms
$(2)$: apply monotone or dominated convergence to both sums (either works)
$(3)$: partial fractions
$(4)$: separate the series into the difference of two convergent series
$(5)$: the series on the left is twice the alternating harmonic series
$phantom(5)text:$ the series on the right telescopes
A Modification of the Approach in the Question
$$
beginalign
lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)
&=lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n-lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n+1tag6\
&=lim_xto1^-xlog(1+x)-lim_xto1^-(1-log(1+x))tag7\[6pt]
&=2log(2)-1tag8
endalign
$$
Explanation:
$(6)$: partial fractions, then separate into two convergent series
$(7)$: the series converge absolutely to $log(1+x)$ for $xlt1$
$(8)$: evaluate at $x=1$
A Different Approach
$$
beginalign
lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)
&=lim_xto1^-sum_n=1^inftyfracx^2n(2n-1)2n
-lim_xto1^-sum_n=1^inftyfracx^2n+12n(2n+1)tag1\
&=sum_n=1^inftyfrac1(2n-1)2n
-sum_n=1^inftyfrac12n(2n+1)tag2\
&=sum_n=1^inftyleft(frac12n-1-frac22n+frac12n+1right)tag3\
&=sum_n=1^inftyleft(frac22n-1-frac22nright)-sum_n=1^inftyleft(frac12n-1-frac12n+1right)tag4\[9pt]
&=2log(2)-1tag5
endalign
$$
Explanation:
$(1)$: separate the series into the difference of the even and the odd terms
$(2)$: apply monotone or dominated convergence to both sums (either works)
$(3)$: partial fractions
$(4)$: separate the series into the difference of two convergent series
$(5)$: the series on the left is twice the alternating harmonic series
$phantom(5)text:$ the series on the right telescopes
A Modification of the Approach in the Question
$$
beginalign
lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n(n+1)
&=lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n-lim_xto1^-sum_n=1^infty(-1)^n-1fracx^n+1n+1tag6\
&=lim_xto1^-xlog(1+x)-lim_xto1^-(1-log(1+x))tag7\[6pt]
&=2log(2)-1tag8
endalign
$$
Explanation:
$(6)$: partial fractions, then separate into two convergent series
$(7)$: the series converge absolutely to $log(1+x)$ for $xlt1$
$(8)$: evaluate at $x=1$
edited Jul 18 at 14:58
answered Jul 18 at 8:25
robjohn♦
258k26297612
258k26297612
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855312%2fprove-that-lim-limits-x-to-1-fx-1-ln-4-where-fx-sum-n-1-inft%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
2
"Better solutions will be accepted", hurray ;)
– Nosrati
Jul 18 at 8:01