Relation between second derivatives and mixed derivatives
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
I'm studying the first chapter of Fourier Analysis -- An Introduction and unfortunately I don't understand some transitions.
There is an equation given (wave equation):
$$fracpartial^2upartial t^2 = fracpartial^2upartial x^2. tag1$$
Moreover we know that:
$$u(x,t) = F(x+t) + G(x-t)$$
is the solution of the equation $(1)$, where $F, G$ are twice differentiable functions.
We are to show that every solution takes this form.
Now we define new variables:
- $xi = x+t$,
- $eta = x-t$.
We define a new function:
$$v(xi, eta) = u(x,t).$$
Everything is quite obvious for the time being.
I don't understand the next step however. My book says, that: The change of variables formula shows that v satisfies:
$$fracpartial^2vpartial xi partial eta =0. tag2$$
I don't know why. I would appreciate any explanation.
My book also says that integrating $(2)$ twice will give us:
$$v(xi, eta) = F(xi) + G(eta).$$
Here again I don't know what the integration should look like.
Thanks for any help!
differential-equations derivatives wave-equation
add a comment |Â
up vote
2
down vote
favorite
I'm studying the first chapter of Fourier Analysis -- An Introduction and unfortunately I don't understand some transitions.
There is an equation given (wave equation):
$$fracpartial^2upartial t^2 = fracpartial^2upartial x^2. tag1$$
Moreover we know that:
$$u(x,t) = F(x+t) + G(x-t)$$
is the solution of the equation $(1)$, where $F, G$ are twice differentiable functions.
We are to show that every solution takes this form.
Now we define new variables:
- $xi = x+t$,
- $eta = x-t$.
We define a new function:
$$v(xi, eta) = u(x,t).$$
Everything is quite obvious for the time being.
I don't understand the next step however. My book says, that: The change of variables formula shows that v satisfies:
$$fracpartial^2vpartial xi partial eta =0. tag2$$
I don't know why. I would appreciate any explanation.
My book also says that integrating $(2)$ twice will give us:
$$v(xi, eta) = F(xi) + G(eta).$$
Here again I don't know what the integration should look like.
Thanks for any help!
differential-equations derivatives wave-equation
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I'm studying the first chapter of Fourier Analysis -- An Introduction and unfortunately I don't understand some transitions.
There is an equation given (wave equation):
$$fracpartial^2upartial t^2 = fracpartial^2upartial x^2. tag1$$
Moreover we know that:
$$u(x,t) = F(x+t) + G(x-t)$$
is the solution of the equation $(1)$, where $F, G$ are twice differentiable functions.
We are to show that every solution takes this form.
Now we define new variables:
- $xi = x+t$,
- $eta = x-t$.
We define a new function:
$$v(xi, eta) = u(x,t).$$
Everything is quite obvious for the time being.
I don't understand the next step however. My book says, that: The change of variables formula shows that v satisfies:
$$fracpartial^2vpartial xi partial eta =0. tag2$$
I don't know why. I would appreciate any explanation.
My book also says that integrating $(2)$ twice will give us:
$$v(xi, eta) = F(xi) + G(eta).$$
Here again I don't know what the integration should look like.
Thanks for any help!
differential-equations derivatives wave-equation
I'm studying the first chapter of Fourier Analysis -- An Introduction and unfortunately I don't understand some transitions.
There is an equation given (wave equation):
$$fracpartial^2upartial t^2 = fracpartial^2upartial x^2. tag1$$
Moreover we know that:
$$u(x,t) = F(x+t) + G(x-t)$$
is the solution of the equation $(1)$, where $F, G$ are twice differentiable functions.
We are to show that every solution takes this form.
Now we define new variables:
- $xi = x+t$,
- $eta = x-t$.
We define a new function:
$$v(xi, eta) = u(x,t).$$
Everything is quite obvious for the time being.
I don't understand the next step however. My book says, that: The change of variables formula shows that v satisfies:
$$fracpartial^2vpartial xi partial eta =0. tag2$$
I don't know why. I would appreciate any explanation.
My book also says that integrating $(2)$ twice will give us:
$$v(xi, eta) = F(xi) + G(eta).$$
Here again I don't know what the integration should look like.
Thanks for any help!
differential-equations derivatives wave-equation
edited Jul 18 at 20:29
hardmath
28.2k94592
28.2k94592
asked Jul 18 at 20:16
Hendrra
925313
925313
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
3
down vote
accepted
That's because of this $$dfracpartial upartial x=dfracpartial upartial etadfracpartial etapartial x+dfracpartial upartial xidfracpartial xipartial x=dfracpartial upartial eta+dfracpartial upartial xi$$therefore$$dfracpartialpartial xdfracpartial upartial x=dfracpartialpartial etadfracpartial upartial x+dfracpartialpartial xidfracpartial upartial x=dfracpartial^2 upartialeta^2+2dfracpartial^2 upartialxipartialeta+dfracpartial^2 upartialxi^2$$similarly $$dfracpartialpartial tdfracpartial upartial t=dfracpartial^2 upartialeta^2-2dfracpartial^2 upartialxipartialeta+dfracpartial^2 upartialxi^2$$therefore $$dfracpartial^2 upartial t^2=dfracpartial^2 upartial x^2$$ yields to $$dfracpartial^2 upartialxipartialeta=0$$
1
Thank you dear @Isham...
– Mostafa Ayaz
Jul 18 at 22:06
1
+1 yw @mostafa .....
– Isham
Jul 18 at 22:06
Thank you! I wonder however how does $dfracpartialpartial xdfracpartial upartial x=dfracpartialpartial etadfracpartial upartial x+dfracpartialpartial xidfracpartial upartial x$ work?
– Hendrra
Jul 19 at 18:02
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
That's because of this $$dfracpartial upartial x=dfracpartial upartial etadfracpartial etapartial x+dfracpartial upartial xidfracpartial xipartial x=dfracpartial upartial eta+dfracpartial upartial xi$$therefore$$dfracpartialpartial xdfracpartial upartial x=dfracpartialpartial etadfracpartial upartial x+dfracpartialpartial xidfracpartial upartial x=dfracpartial^2 upartialeta^2+2dfracpartial^2 upartialxipartialeta+dfracpartial^2 upartialxi^2$$similarly $$dfracpartialpartial tdfracpartial upartial t=dfracpartial^2 upartialeta^2-2dfracpartial^2 upartialxipartialeta+dfracpartial^2 upartialxi^2$$therefore $$dfracpartial^2 upartial t^2=dfracpartial^2 upartial x^2$$ yields to $$dfracpartial^2 upartialxipartialeta=0$$
1
Thank you dear @Isham...
– Mostafa Ayaz
Jul 18 at 22:06
1
+1 yw @mostafa .....
– Isham
Jul 18 at 22:06
Thank you! I wonder however how does $dfracpartialpartial xdfracpartial upartial x=dfracpartialpartial etadfracpartial upartial x+dfracpartialpartial xidfracpartial upartial x$ work?
– Hendrra
Jul 19 at 18:02
add a comment |Â
up vote
3
down vote
accepted
That's because of this $$dfracpartial upartial x=dfracpartial upartial etadfracpartial etapartial x+dfracpartial upartial xidfracpartial xipartial x=dfracpartial upartial eta+dfracpartial upartial xi$$therefore$$dfracpartialpartial xdfracpartial upartial x=dfracpartialpartial etadfracpartial upartial x+dfracpartialpartial xidfracpartial upartial x=dfracpartial^2 upartialeta^2+2dfracpartial^2 upartialxipartialeta+dfracpartial^2 upartialxi^2$$similarly $$dfracpartialpartial tdfracpartial upartial t=dfracpartial^2 upartialeta^2-2dfracpartial^2 upartialxipartialeta+dfracpartial^2 upartialxi^2$$therefore $$dfracpartial^2 upartial t^2=dfracpartial^2 upartial x^2$$ yields to $$dfracpartial^2 upartialxipartialeta=0$$
1
Thank you dear @Isham...
– Mostafa Ayaz
Jul 18 at 22:06
1
+1 yw @mostafa .....
– Isham
Jul 18 at 22:06
Thank you! I wonder however how does $dfracpartialpartial xdfracpartial upartial x=dfracpartialpartial etadfracpartial upartial x+dfracpartialpartial xidfracpartial upartial x$ work?
– Hendrra
Jul 19 at 18:02
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
That's because of this $$dfracpartial upartial x=dfracpartial upartial etadfracpartial etapartial x+dfracpartial upartial xidfracpartial xipartial x=dfracpartial upartial eta+dfracpartial upartial xi$$therefore$$dfracpartialpartial xdfracpartial upartial x=dfracpartialpartial etadfracpartial upartial x+dfracpartialpartial xidfracpartial upartial x=dfracpartial^2 upartialeta^2+2dfracpartial^2 upartialxipartialeta+dfracpartial^2 upartialxi^2$$similarly $$dfracpartialpartial tdfracpartial upartial t=dfracpartial^2 upartialeta^2-2dfracpartial^2 upartialxipartialeta+dfracpartial^2 upartialxi^2$$therefore $$dfracpartial^2 upartial t^2=dfracpartial^2 upartial x^2$$ yields to $$dfracpartial^2 upartialxipartialeta=0$$
That's because of this $$dfracpartial upartial x=dfracpartial upartial etadfracpartial etapartial x+dfracpartial upartial xidfracpartial xipartial x=dfracpartial upartial eta+dfracpartial upartial xi$$therefore$$dfracpartialpartial xdfracpartial upartial x=dfracpartialpartial etadfracpartial upartial x+dfracpartialpartial xidfracpartial upartial x=dfracpartial^2 upartialeta^2+2dfracpartial^2 upartialxipartialeta+dfracpartial^2 upartialxi^2$$similarly $$dfracpartialpartial tdfracpartial upartial t=dfracpartial^2 upartialeta^2-2dfracpartial^2 upartialxipartialeta+dfracpartial^2 upartialxi^2$$therefore $$dfracpartial^2 upartial t^2=dfracpartial^2 upartial x^2$$ yields to $$dfracpartial^2 upartialxipartialeta=0$$
edited Jul 18 at 22:05
answered Jul 18 at 21:15


Mostafa Ayaz
8,6023630
8,6023630
1
Thank you dear @Isham...
– Mostafa Ayaz
Jul 18 at 22:06
1
+1 yw @mostafa .....
– Isham
Jul 18 at 22:06
Thank you! I wonder however how does $dfracpartialpartial xdfracpartial upartial x=dfracpartialpartial etadfracpartial upartial x+dfracpartialpartial xidfracpartial upartial x$ work?
– Hendrra
Jul 19 at 18:02
add a comment |Â
1
Thank you dear @Isham...
– Mostafa Ayaz
Jul 18 at 22:06
1
+1 yw @mostafa .....
– Isham
Jul 18 at 22:06
Thank you! I wonder however how does $dfracpartialpartial xdfracpartial upartial x=dfracpartialpartial etadfracpartial upartial x+dfracpartialpartial xidfracpartial upartial x$ work?
– Hendrra
Jul 19 at 18:02
1
1
Thank you dear @Isham...
– Mostafa Ayaz
Jul 18 at 22:06
Thank you dear @Isham...
– Mostafa Ayaz
Jul 18 at 22:06
1
1
+1 yw @mostafa .....
– Isham
Jul 18 at 22:06
+1 yw @mostafa .....
– Isham
Jul 18 at 22:06
Thank you! I wonder however how does $dfracpartialpartial xdfracpartial upartial x=dfracpartialpartial etadfracpartial upartial x+dfracpartialpartial xidfracpartial upartial x$ work?
– Hendrra
Jul 19 at 18:02
Thank you! I wonder however how does $dfracpartialpartial xdfracpartial upartial x=dfracpartialpartial etadfracpartial upartial x+dfracpartialpartial xidfracpartial upartial x$ work?
– Hendrra
Jul 19 at 18:02
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855957%2frelation-between-second-derivatives-and-mixed-derivatives%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password