Remainder of a Polynomial when divided by a polynomial with nonreal roots
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
What will be the remainder when $x^2015+x^2016$ is divided by $x^2+x+1$ without using the fact that $x^2+x+1$ has roots as non real cube roots of unity.
algebra-precalculus
add a comment |Â
up vote
2
down vote
favorite
What will be the remainder when $x^2015+x^2016$ is divided by $x^2+x+1$ without using the fact that $x^2+x+1$ has roots as non real cube roots of unity.
algebra-precalculus
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
What will be the remainder when $x^2015+x^2016$ is divided by $x^2+x+1$ without using the fact that $x^2+x+1$ has roots as non real cube roots of unity.
algebra-precalculus
What will be the remainder when $x^2015+x^2016$ is divided by $x^2+x+1$ without using the fact that $x^2+x+1$ has roots as non real cube roots of unity.
algebra-precalculus
edited Jul 25 at 5:43


tinlyx
90811118
90811118
asked Jul 25 at 4:50
Dhiraj Kumar Kushwaha
111
111
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
0
down vote
$$x^3-1=(x-1)(x^2+x+1)=?$$
$$x^2015=(x^3)^671x^2=?$$
$$x^2016=(x^3)^672=?$$
add a comment |Â
up vote
0
down vote
Hint: Â using that $a^3-1=(a-1)(a^2+a+1)$ and so $,x^3k-1=(x-1)(x^2+x+1)(ldots),$:
$$
big(x^2016colorred-1big)+big(x^2015colorred-x^2big)colorred+1+x^2 \
=left(left(x^3right)^672-1right)+x^2left(left(x^3right)^671-1right)+big(x^2colorblue+ x + 1big)colorblue- x
$$
add a comment |Â
up vote
0
down vote
Let $K$ be the base field, and consider the more general problem of finding the remainder $r(x)$ of the division of a polynomial $p(x)in K[x]$ by $(x-a)(x-b)$ ($ane b$) in terms of $p,a$ and $b$.
We know that, dividing $p(x)$ by $x-a$, we obtain
$$p(x)=q(x) (x-a)+p(a),qquad q(x)in K[x].tag1$$
Now dividing $q(x)$ by $x-b$ yields similarly $;q(x)=q_1(x)(x-b)+q(b)$, so
$$p(x)=q_1(x)(x-a)(x-b)+underbraceq(b)(x-a)+p(a)_textremainder.$$
Now from $(1)$ we deduce $;q(b)=dfracp(b)-p(a)b-a$, so
beginalign
r(x)&=fracp(b)-p(a)b-a(x-a)+p(a)=fracbigl(p(b)-p(a)bigr)(x-a)+(b-a)p(a)b-a\[1.5ex]
&=fracp(b)(x-a)-p(a)(x-b)b-a=frac1b-a,beginvmatrixx-a &p(a)\x-b&p(b)endvmatrix.
endalign
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
$$x^3-1=(x-1)(x^2+x+1)=?$$
$$x^2015=(x^3)^671x^2=?$$
$$x^2016=(x^3)^672=?$$
add a comment |Â
up vote
0
down vote
$$x^3-1=(x-1)(x^2+x+1)=?$$
$$x^2015=(x^3)^671x^2=?$$
$$x^2016=(x^3)^672=?$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$$x^3-1=(x-1)(x^2+x+1)=?$$
$$x^2015=(x^3)^671x^2=?$$
$$x^2016=(x^3)^672=?$$
$$x^3-1=(x-1)(x^2+x+1)=?$$
$$x^2015=(x^3)^671x^2=?$$
$$x^2016=(x^3)^672=?$$
answered Jul 25 at 5:00
lab bhattacharjee
215k14152264
215k14152264
add a comment |Â
add a comment |Â
up vote
0
down vote
Hint: Â using that $a^3-1=(a-1)(a^2+a+1)$ and so $,x^3k-1=(x-1)(x^2+x+1)(ldots),$:
$$
big(x^2016colorred-1big)+big(x^2015colorred-x^2big)colorred+1+x^2 \
=left(left(x^3right)^672-1right)+x^2left(left(x^3right)^671-1right)+big(x^2colorblue+ x + 1big)colorblue- x
$$
add a comment |Â
up vote
0
down vote
Hint: Â using that $a^3-1=(a-1)(a^2+a+1)$ and so $,x^3k-1=(x-1)(x^2+x+1)(ldots),$:
$$
big(x^2016colorred-1big)+big(x^2015colorred-x^2big)colorred+1+x^2 \
=left(left(x^3right)^672-1right)+x^2left(left(x^3right)^671-1right)+big(x^2colorblue+ x + 1big)colorblue- x
$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Hint: Â using that $a^3-1=(a-1)(a^2+a+1)$ and so $,x^3k-1=(x-1)(x^2+x+1)(ldots),$:
$$
big(x^2016colorred-1big)+big(x^2015colorred-x^2big)colorred+1+x^2 \
=left(left(x^3right)^672-1right)+x^2left(left(x^3right)^671-1right)+big(x^2colorblue+ x + 1big)colorblue- x
$$
Hint: Â using that $a^3-1=(a-1)(a^2+a+1)$ and so $,x^3k-1=(x-1)(x^2+x+1)(ldots),$:
$$
big(x^2016colorred-1big)+big(x^2015colorred-x^2big)colorred+1+x^2 \
=left(left(x^3right)^672-1right)+x^2left(left(x^3right)^671-1right)+big(x^2colorblue+ x + 1big)colorblue- x
$$
answered Jul 25 at 6:16


dxiv
53.9k64796
53.9k64796
add a comment |Â
add a comment |Â
up vote
0
down vote
Let $K$ be the base field, and consider the more general problem of finding the remainder $r(x)$ of the division of a polynomial $p(x)in K[x]$ by $(x-a)(x-b)$ ($ane b$) in terms of $p,a$ and $b$.
We know that, dividing $p(x)$ by $x-a$, we obtain
$$p(x)=q(x) (x-a)+p(a),qquad q(x)in K[x].tag1$$
Now dividing $q(x)$ by $x-b$ yields similarly $;q(x)=q_1(x)(x-b)+q(b)$, so
$$p(x)=q_1(x)(x-a)(x-b)+underbraceq(b)(x-a)+p(a)_textremainder.$$
Now from $(1)$ we deduce $;q(b)=dfracp(b)-p(a)b-a$, so
beginalign
r(x)&=fracp(b)-p(a)b-a(x-a)+p(a)=fracbigl(p(b)-p(a)bigr)(x-a)+(b-a)p(a)b-a\[1.5ex]
&=fracp(b)(x-a)-p(a)(x-b)b-a=frac1b-a,beginvmatrixx-a &p(a)\x-b&p(b)endvmatrix.
endalign
add a comment |Â
up vote
0
down vote
Let $K$ be the base field, and consider the more general problem of finding the remainder $r(x)$ of the division of a polynomial $p(x)in K[x]$ by $(x-a)(x-b)$ ($ane b$) in terms of $p,a$ and $b$.
We know that, dividing $p(x)$ by $x-a$, we obtain
$$p(x)=q(x) (x-a)+p(a),qquad q(x)in K[x].tag1$$
Now dividing $q(x)$ by $x-b$ yields similarly $;q(x)=q_1(x)(x-b)+q(b)$, so
$$p(x)=q_1(x)(x-a)(x-b)+underbraceq(b)(x-a)+p(a)_textremainder.$$
Now from $(1)$ we deduce $;q(b)=dfracp(b)-p(a)b-a$, so
beginalign
r(x)&=fracp(b)-p(a)b-a(x-a)+p(a)=fracbigl(p(b)-p(a)bigr)(x-a)+(b-a)p(a)b-a\[1.5ex]
&=fracp(b)(x-a)-p(a)(x-b)b-a=frac1b-a,beginvmatrixx-a &p(a)\x-b&p(b)endvmatrix.
endalign
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Let $K$ be the base field, and consider the more general problem of finding the remainder $r(x)$ of the division of a polynomial $p(x)in K[x]$ by $(x-a)(x-b)$ ($ane b$) in terms of $p,a$ and $b$.
We know that, dividing $p(x)$ by $x-a$, we obtain
$$p(x)=q(x) (x-a)+p(a),qquad q(x)in K[x].tag1$$
Now dividing $q(x)$ by $x-b$ yields similarly $;q(x)=q_1(x)(x-b)+q(b)$, so
$$p(x)=q_1(x)(x-a)(x-b)+underbraceq(b)(x-a)+p(a)_textremainder.$$
Now from $(1)$ we deduce $;q(b)=dfracp(b)-p(a)b-a$, so
beginalign
r(x)&=fracp(b)-p(a)b-a(x-a)+p(a)=fracbigl(p(b)-p(a)bigr)(x-a)+(b-a)p(a)b-a\[1.5ex]
&=fracp(b)(x-a)-p(a)(x-b)b-a=frac1b-a,beginvmatrixx-a &p(a)\x-b&p(b)endvmatrix.
endalign
Let $K$ be the base field, and consider the more general problem of finding the remainder $r(x)$ of the division of a polynomial $p(x)in K[x]$ by $(x-a)(x-b)$ ($ane b$) in terms of $p,a$ and $b$.
We know that, dividing $p(x)$ by $x-a$, we obtain
$$p(x)=q(x) (x-a)+p(a),qquad q(x)in K[x].tag1$$
Now dividing $q(x)$ by $x-b$ yields similarly $;q(x)=q_1(x)(x-b)+q(b)$, so
$$p(x)=q_1(x)(x-a)(x-b)+underbraceq(b)(x-a)+p(a)_textremainder.$$
Now from $(1)$ we deduce $;q(b)=dfracp(b)-p(a)b-a$, so
beginalign
r(x)&=fracp(b)-p(a)b-a(x-a)+p(a)=fracbigl(p(b)-p(a)bigr)(x-a)+(b-a)p(a)b-a\[1.5ex]
&=fracp(b)(x-a)-p(a)(x-b)b-a=frac1b-a,beginvmatrixx-a &p(a)\x-b&p(b)endvmatrix.
endalign
answered Jul 25 at 9:20
Bernard
110k635103
110k635103
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862039%2fremainder-of-a-polynomial-when-divided-by-a-polynomial-with-nonreal-roots%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password