Remainder of a Polynomial when divided by a polynomial with nonreal roots

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












What will be the remainder when $x^2015+x^2016$ is divided by $x^2+x+1$ without using the fact that $x^2+x+1$ has roots as non real cube roots of unity.







share|cite|improve this question

























    up vote
    2
    down vote

    favorite












    What will be the remainder when $x^2015+x^2016$ is divided by $x^2+x+1$ without using the fact that $x^2+x+1$ has roots as non real cube roots of unity.







    share|cite|improve this question























      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      What will be the remainder when $x^2015+x^2016$ is divided by $x^2+x+1$ without using the fact that $x^2+x+1$ has roots as non real cube roots of unity.







      share|cite|improve this question













      What will be the remainder when $x^2015+x^2016$ is divided by $x^2+x+1$ without using the fact that $x^2+x+1$ has roots as non real cube roots of unity.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 25 at 5:43









      tinlyx

      90811118




      90811118









      asked Jul 25 at 4:50









      Dhiraj Kumar Kushwaha

      111




      111




















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          0
          down vote













          $$x^3-1=(x-1)(x^2+x+1)=?$$



          $$x^2015=(x^3)^671x^2=?$$



          $$x^2016=(x^3)^672=?$$






          share|cite|improve this answer




























            up vote
            0
            down vote













            Hint:  using that $a^3-1=(a-1)(a^2+a+1)$ and so $,x^3k-1=(x-1)(x^2+x+1)(ldots),$:



            $$
            big(x^2016colorred-1big)+big(x^2015colorred-x^2big)colorred+1+x^2 \
            =left(left(x^3right)^672-1right)+x^2left(left(x^3right)^671-1right)+big(x^2colorblue+ x + 1big)colorblue- x
            $$






            share|cite|improve this answer




























              up vote
              0
              down vote













              Let $K$ be the base field, and consider the more general problem of finding the remainder $r(x)$ of the division of a polynomial $p(x)in K[x]$ by $(x-a)(x-b)$ ($ane b$) in terms of $p,a$ and $b$.



              We know that, dividing $p(x)$ by $x-a$, we obtain
              $$p(x)=q(x) (x-a)+p(a),qquad q(x)in K[x].tag1$$
              Now dividing $q(x)$ by $x-b$ yields similarly $;q(x)=q_1(x)(x-b)+q(b)$, so
              $$p(x)=q_1(x)(x-a)(x-b)+underbraceq(b)(x-a)+p(a)_textremainder.$$



              Now from $(1)$ we deduce $;q(b)=dfracp(b)-p(a)b-a$, so
              beginalign
              r(x)&=fracp(b)-p(a)b-a(x-a)+p(a)=fracbigl(p(b)-p(a)bigr)(x-a)+(b-a)p(a)b-a\[1.5ex]
              &=fracp(b)(x-a)-p(a)(x-b)b-a=frac1b-a,beginvmatrixx-a &p(a)\x-b&p(b)endvmatrix.
              endalign






              share|cite|improve this answer





















                Your Answer




                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                convertImagesToLinks: true,
                noModals: false,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );








                 

                draft saved


                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862039%2fremainder-of-a-polynomial-when-divided-by-a-polynomial-with-nonreal-roots%23new-answer', 'question_page');

                );

                Post as a guest






























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                0
                down vote













                $$x^3-1=(x-1)(x^2+x+1)=?$$



                $$x^2015=(x^3)^671x^2=?$$



                $$x^2016=(x^3)^672=?$$






                share|cite|improve this answer

























                  up vote
                  0
                  down vote













                  $$x^3-1=(x-1)(x^2+x+1)=?$$



                  $$x^2015=(x^3)^671x^2=?$$



                  $$x^2016=(x^3)^672=?$$






                  share|cite|improve this answer























                    up vote
                    0
                    down vote










                    up vote
                    0
                    down vote









                    $$x^3-1=(x-1)(x^2+x+1)=?$$



                    $$x^2015=(x^3)^671x^2=?$$



                    $$x^2016=(x^3)^672=?$$






                    share|cite|improve this answer













                    $$x^3-1=(x-1)(x^2+x+1)=?$$



                    $$x^2015=(x^3)^671x^2=?$$



                    $$x^2016=(x^3)^672=?$$







                    share|cite|improve this answer













                    share|cite|improve this answer



                    share|cite|improve this answer











                    answered Jul 25 at 5:00









                    lab bhattacharjee

                    215k14152264




                    215k14152264




















                        up vote
                        0
                        down vote













                        Hint:  using that $a^3-1=(a-1)(a^2+a+1)$ and so $,x^3k-1=(x-1)(x^2+x+1)(ldots),$:



                        $$
                        big(x^2016colorred-1big)+big(x^2015colorred-x^2big)colorred+1+x^2 \
                        =left(left(x^3right)^672-1right)+x^2left(left(x^3right)^671-1right)+big(x^2colorblue+ x + 1big)colorblue- x
                        $$






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote













                          Hint:  using that $a^3-1=(a-1)(a^2+a+1)$ and so $,x^3k-1=(x-1)(x^2+x+1)(ldots),$:



                          $$
                          big(x^2016colorred-1big)+big(x^2015colorred-x^2big)colorred+1+x^2 \
                          =left(left(x^3right)^672-1right)+x^2left(left(x^3right)^671-1right)+big(x^2colorblue+ x + 1big)colorblue- x
                          $$






                          share|cite|improve this answer























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            Hint:  using that $a^3-1=(a-1)(a^2+a+1)$ and so $,x^3k-1=(x-1)(x^2+x+1)(ldots),$:



                            $$
                            big(x^2016colorred-1big)+big(x^2015colorred-x^2big)colorred+1+x^2 \
                            =left(left(x^3right)^672-1right)+x^2left(left(x^3right)^671-1right)+big(x^2colorblue+ x + 1big)colorblue- x
                            $$






                            share|cite|improve this answer













                            Hint:  using that $a^3-1=(a-1)(a^2+a+1)$ and so $,x^3k-1=(x-1)(x^2+x+1)(ldots),$:



                            $$
                            big(x^2016colorred-1big)+big(x^2015colorred-x^2big)colorred+1+x^2 \
                            =left(left(x^3right)^672-1right)+x^2left(left(x^3right)^671-1right)+big(x^2colorblue+ x + 1big)colorblue- x
                            $$







                            share|cite|improve this answer













                            share|cite|improve this answer



                            share|cite|improve this answer











                            answered Jul 25 at 6:16









                            dxiv

                            53.9k64796




                            53.9k64796




















                                up vote
                                0
                                down vote













                                Let $K$ be the base field, and consider the more general problem of finding the remainder $r(x)$ of the division of a polynomial $p(x)in K[x]$ by $(x-a)(x-b)$ ($ane b$) in terms of $p,a$ and $b$.



                                We know that, dividing $p(x)$ by $x-a$, we obtain
                                $$p(x)=q(x) (x-a)+p(a),qquad q(x)in K[x].tag1$$
                                Now dividing $q(x)$ by $x-b$ yields similarly $;q(x)=q_1(x)(x-b)+q(b)$, so
                                $$p(x)=q_1(x)(x-a)(x-b)+underbraceq(b)(x-a)+p(a)_textremainder.$$



                                Now from $(1)$ we deduce $;q(b)=dfracp(b)-p(a)b-a$, so
                                beginalign
                                r(x)&=fracp(b)-p(a)b-a(x-a)+p(a)=fracbigl(p(b)-p(a)bigr)(x-a)+(b-a)p(a)b-a\[1.5ex]
                                &=fracp(b)(x-a)-p(a)(x-b)b-a=frac1b-a,beginvmatrixx-a &p(a)\x-b&p(b)endvmatrix.
                                endalign






                                share|cite|improve this answer

























                                  up vote
                                  0
                                  down vote













                                  Let $K$ be the base field, and consider the more general problem of finding the remainder $r(x)$ of the division of a polynomial $p(x)in K[x]$ by $(x-a)(x-b)$ ($ane b$) in terms of $p,a$ and $b$.



                                  We know that, dividing $p(x)$ by $x-a$, we obtain
                                  $$p(x)=q(x) (x-a)+p(a),qquad q(x)in K[x].tag1$$
                                  Now dividing $q(x)$ by $x-b$ yields similarly $;q(x)=q_1(x)(x-b)+q(b)$, so
                                  $$p(x)=q_1(x)(x-a)(x-b)+underbraceq(b)(x-a)+p(a)_textremainder.$$



                                  Now from $(1)$ we deduce $;q(b)=dfracp(b)-p(a)b-a$, so
                                  beginalign
                                  r(x)&=fracp(b)-p(a)b-a(x-a)+p(a)=fracbigl(p(b)-p(a)bigr)(x-a)+(b-a)p(a)b-a\[1.5ex]
                                  &=fracp(b)(x-a)-p(a)(x-b)b-a=frac1b-a,beginvmatrixx-a &p(a)\x-b&p(b)endvmatrix.
                                  endalign






                                  share|cite|improve this answer























                                    up vote
                                    0
                                    down vote










                                    up vote
                                    0
                                    down vote









                                    Let $K$ be the base field, and consider the more general problem of finding the remainder $r(x)$ of the division of a polynomial $p(x)in K[x]$ by $(x-a)(x-b)$ ($ane b$) in terms of $p,a$ and $b$.



                                    We know that, dividing $p(x)$ by $x-a$, we obtain
                                    $$p(x)=q(x) (x-a)+p(a),qquad q(x)in K[x].tag1$$
                                    Now dividing $q(x)$ by $x-b$ yields similarly $;q(x)=q_1(x)(x-b)+q(b)$, so
                                    $$p(x)=q_1(x)(x-a)(x-b)+underbraceq(b)(x-a)+p(a)_textremainder.$$



                                    Now from $(1)$ we deduce $;q(b)=dfracp(b)-p(a)b-a$, so
                                    beginalign
                                    r(x)&=fracp(b)-p(a)b-a(x-a)+p(a)=fracbigl(p(b)-p(a)bigr)(x-a)+(b-a)p(a)b-a\[1.5ex]
                                    &=fracp(b)(x-a)-p(a)(x-b)b-a=frac1b-a,beginvmatrixx-a &p(a)\x-b&p(b)endvmatrix.
                                    endalign






                                    share|cite|improve this answer













                                    Let $K$ be the base field, and consider the more general problem of finding the remainder $r(x)$ of the division of a polynomial $p(x)in K[x]$ by $(x-a)(x-b)$ ($ane b$) in terms of $p,a$ and $b$.



                                    We know that, dividing $p(x)$ by $x-a$, we obtain
                                    $$p(x)=q(x) (x-a)+p(a),qquad q(x)in K[x].tag1$$
                                    Now dividing $q(x)$ by $x-b$ yields similarly $;q(x)=q_1(x)(x-b)+q(b)$, so
                                    $$p(x)=q_1(x)(x-a)(x-b)+underbraceq(b)(x-a)+p(a)_textremainder.$$



                                    Now from $(1)$ we deduce $;q(b)=dfracp(b)-p(a)b-a$, so
                                    beginalign
                                    r(x)&=fracp(b)-p(a)b-a(x-a)+p(a)=fracbigl(p(b)-p(a)bigr)(x-a)+(b-a)p(a)b-a\[1.5ex]
                                    &=fracp(b)(x-a)-p(a)(x-b)b-a=frac1b-a,beginvmatrixx-a &p(a)\x-b&p(b)endvmatrix.
                                    endalign







                                    share|cite|improve this answer













                                    share|cite|improve this answer



                                    share|cite|improve this answer











                                    answered Jul 25 at 9:20









                                    Bernard

                                    110k635103




                                    110k635103






















                                         

                                        draft saved


                                        draft discarded


























                                         


                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862039%2fremainder-of-a-polynomial-when-divided-by-a-polynomial-with-nonreal-roots%23new-answer', 'question_page');

                                        );

                                        Post as a guest













































































                                        Comments

                                        Popular posts from this blog

                                        What is the equation of a 3D cone with generalised tilt?

                                        Color the edges and diagonals of a regular polygon

                                        Relationship between determinant of matrix and determinant of adjoint?