Reverse of Euler's Homogeneous Function Theorem
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Euler's Homogeneous Function Theorem says,
if $$f(tx,ty)=t^nf(x,y),$$
then one has: $$xfracpartial fpartial x(x,y)+yfracpartial fpartial x(x,y)=nf(x,y)$$
However, can we reverse it? ie.
if $$f(tx,ty)=t^nf(x,y),$$
and there exist 2 functions $g(x,y)$ and $h(x,y)$ such that $$xg(x,y)+yh(x,y)=nf(x,y).$$
then can we say that it must be $$g(x,y)=fracpartial fpartial x(x,y)$$ and $$h(x,y)=fracpartial fpartial x(x,y),?$$
calculus
add a comment |Â
up vote
1
down vote
favorite
Euler's Homogeneous Function Theorem says,
if $$f(tx,ty)=t^nf(x,y),$$
then one has: $$xfracpartial fpartial x(x,y)+yfracpartial fpartial x(x,y)=nf(x,y)$$
However, can we reverse it? ie.
if $$f(tx,ty)=t^nf(x,y),$$
and there exist 2 functions $g(x,y)$ and $h(x,y)$ such that $$xg(x,y)+yh(x,y)=nf(x,y).$$
then can we say that it must be $$g(x,y)=fracpartial fpartial x(x,y)$$ and $$h(x,y)=fracpartial fpartial x(x,y),?$$
calculus
@GiuseppeNegro updated again.
– athos
Jul 31 at 9:36
1
Not exactly your question, but there is a different way of "reversing" Euler's theorem: en.wikipedia.org/wiki/Homogeneous_function#Positive_homogeneity
– Theoretical Economist
Jul 31 at 11:57
now i get the whole picture, thanks! @TheoreticalEconomist
– athos
Aug 2 at 0:41
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Euler's Homogeneous Function Theorem says,
if $$f(tx,ty)=t^nf(x,y),$$
then one has: $$xfracpartial fpartial x(x,y)+yfracpartial fpartial x(x,y)=nf(x,y)$$
However, can we reverse it? ie.
if $$f(tx,ty)=t^nf(x,y),$$
and there exist 2 functions $g(x,y)$ and $h(x,y)$ such that $$xg(x,y)+yh(x,y)=nf(x,y).$$
then can we say that it must be $$g(x,y)=fracpartial fpartial x(x,y)$$ and $$h(x,y)=fracpartial fpartial x(x,y),?$$
calculus
Euler's Homogeneous Function Theorem says,
if $$f(tx,ty)=t^nf(x,y),$$
then one has: $$xfracpartial fpartial x(x,y)+yfracpartial fpartial x(x,y)=nf(x,y)$$
However, can we reverse it? ie.
if $$f(tx,ty)=t^nf(x,y),$$
and there exist 2 functions $g(x,y)$ and $h(x,y)$ such that $$xg(x,y)+yh(x,y)=nf(x,y).$$
then can we say that it must be $$g(x,y)=fracpartial fpartial x(x,y)$$ and $$h(x,y)=fracpartial fpartial x(x,y),?$$
calculus
edited Jul 31 at 9:35
asked Jul 31 at 9:22
athos
70411236
70411236
@GiuseppeNegro updated again.
– athos
Jul 31 at 9:36
1
Not exactly your question, but there is a different way of "reversing" Euler's theorem: en.wikipedia.org/wiki/Homogeneous_function#Positive_homogeneity
– Theoretical Economist
Jul 31 at 11:57
now i get the whole picture, thanks! @TheoreticalEconomist
– athos
Aug 2 at 0:41
add a comment |Â
@GiuseppeNegro updated again.
– athos
Jul 31 at 9:36
1
Not exactly your question, but there is a different way of "reversing" Euler's theorem: en.wikipedia.org/wiki/Homogeneous_function#Positive_homogeneity
– Theoretical Economist
Jul 31 at 11:57
now i get the whole picture, thanks! @TheoreticalEconomist
– athos
Aug 2 at 0:41
@GiuseppeNegro updated again.
– athos
Jul 31 at 9:36
@GiuseppeNegro updated again.
– athos
Jul 31 at 9:36
1
1
Not exactly your question, but there is a different way of "reversing" Euler's theorem: en.wikipedia.org/wiki/Homogeneous_function#Positive_homogeneity
– Theoretical Economist
Jul 31 at 11:57
Not exactly your question, but there is a different way of "reversing" Euler's theorem: en.wikipedia.org/wiki/Homogeneous_function#Positive_homogeneity
– Theoretical Economist
Jul 31 at 11:57
now i get the whole picture, thanks! @TheoreticalEconomist
– athos
Aug 2 at 0:41
now i get the whole picture, thanks! @TheoreticalEconomist
– athos
Aug 2 at 0:41
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
3
down vote
accepted
The answer is no. Consider $f(x, y)=x^2+y^2$, which is $2$-homogeneous. It satisfies
$$
2f(x, y)= xg(x, y)+yh(x, y)$$
with $g(x, y)= 2x+ 2y, h(x, y)=2y-2x$, so $gne partial_x f$ and $hnepartial_y f$.
How about in general $n$? Eg if $n=1$, does it hold ?
– athos
Jul 31 at 10:08
No. With $f=(x^2+y^2)^n/2$ and $g=partial_x f +ny, h=partial_y f-nx$ you get a counterexample for all $n$.
– Giuseppe Negro
Jul 31 at 10:11
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
The answer is no. Consider $f(x, y)=x^2+y^2$, which is $2$-homogeneous. It satisfies
$$
2f(x, y)= xg(x, y)+yh(x, y)$$
with $g(x, y)= 2x+ 2y, h(x, y)=2y-2x$, so $gne partial_x f$ and $hnepartial_y f$.
How about in general $n$? Eg if $n=1$, does it hold ?
– athos
Jul 31 at 10:08
No. With $f=(x^2+y^2)^n/2$ and $g=partial_x f +ny, h=partial_y f-nx$ you get a counterexample for all $n$.
– Giuseppe Negro
Jul 31 at 10:11
add a comment |Â
up vote
3
down vote
accepted
The answer is no. Consider $f(x, y)=x^2+y^2$, which is $2$-homogeneous. It satisfies
$$
2f(x, y)= xg(x, y)+yh(x, y)$$
with $g(x, y)= 2x+ 2y, h(x, y)=2y-2x$, so $gne partial_x f$ and $hnepartial_y f$.
How about in general $n$? Eg if $n=1$, does it hold ?
– athos
Jul 31 at 10:08
No. With $f=(x^2+y^2)^n/2$ and $g=partial_x f +ny, h=partial_y f-nx$ you get a counterexample for all $n$.
– Giuseppe Negro
Jul 31 at 10:11
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
The answer is no. Consider $f(x, y)=x^2+y^2$, which is $2$-homogeneous. It satisfies
$$
2f(x, y)= xg(x, y)+yh(x, y)$$
with $g(x, y)= 2x+ 2y, h(x, y)=2y-2x$, so $gne partial_x f$ and $hnepartial_y f$.
The answer is no. Consider $f(x, y)=x^2+y^2$, which is $2$-homogeneous. It satisfies
$$
2f(x, y)= xg(x, y)+yh(x, y)$$
with $g(x, y)= 2x+ 2y, h(x, y)=2y-2x$, so $gne partial_x f$ and $hnepartial_y f$.
answered Jul 31 at 9:40


Giuseppe Negro
15.6k328117
15.6k328117
How about in general $n$? Eg if $n=1$, does it hold ?
– athos
Jul 31 at 10:08
No. With $f=(x^2+y^2)^n/2$ and $g=partial_x f +ny, h=partial_y f-nx$ you get a counterexample for all $n$.
– Giuseppe Negro
Jul 31 at 10:11
add a comment |Â
How about in general $n$? Eg if $n=1$, does it hold ?
– athos
Jul 31 at 10:08
No. With $f=(x^2+y^2)^n/2$ and $g=partial_x f +ny, h=partial_y f-nx$ you get a counterexample for all $n$.
– Giuseppe Negro
Jul 31 at 10:11
How about in general $n$? Eg if $n=1$, does it hold ?
– athos
Jul 31 at 10:08
How about in general $n$? Eg if $n=1$, does it hold ?
– athos
Jul 31 at 10:08
No. With $f=(x^2+y^2)^n/2$ and $g=partial_x f +ny, h=partial_y f-nx$ you get a counterexample for all $n$.
– Giuseppe Negro
Jul 31 at 10:11
No. With $f=(x^2+y^2)^n/2$ and $g=partial_x f +ny, h=partial_y f-nx$ you get a counterexample for all $n$.
– Giuseppe Negro
Jul 31 at 10:11
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867842%2freverse-of-eulers-homogeneous-function-theorem%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
@GiuseppeNegro updated again.
– athos
Jul 31 at 9:36
1
Not exactly your question, but there is a different way of "reversing" Euler's theorem: en.wikipedia.org/wiki/Homogeneous_function#Positive_homogeneity
– Theoretical Economist
Jul 31 at 11:57
now i get the whole picture, thanks! @TheoreticalEconomist
– athos
Aug 2 at 0:41