Trying to $int_0^pi/2cos(2x)ln^2(tan(x/2)) dx$
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
I would like to evaluate this integral
$$large int_0^pi/2cos(2x)ln^2(tan(x/2))mathrm dx$$
Choosing
$u=fracx2$
$mathrm dx=2mathrm du$
$$2int_0^pi/4cos(4u)ln^2(tan u)mathrm du$$
Choosing $cos(4u)=sin^4(u)-6cos^2(u)sin^2(u)+cos^4(4)$
transforming into
$$2int_0^pi/4sec^2(u)cdot frac[tan^2(u)-2tan(u)-1][tan^2(u)+2tan(u)-1]ln^2(tan(u))(1+tan^2(u))^3du$$
Choosing
$v=tan(u)$
$mathrm du=frac1sec^2(u)mathrm dv$
$$2int_0^inftyfrac(v^2-2v-1)(v^2+2v-1)ln^2(v)(1+v^2)^3mathrm dv$$
$$2int_0^inftyfracln^2(v)1+v^2dv-4int_0^inftyfracln^2(v)(1+v^2)^2dv+4int_0^inftyfracln^2(v)(1+v^2)^3dv$$
I was thinking of applying binomial series, but it can't be don't
how would I continue this?
calculus integration definite-integrals trigonometric-integrals
add a comment |Â
up vote
3
down vote
favorite
I would like to evaluate this integral
$$large int_0^pi/2cos(2x)ln^2(tan(x/2))mathrm dx$$
Choosing
$u=fracx2$
$mathrm dx=2mathrm du$
$$2int_0^pi/4cos(4u)ln^2(tan u)mathrm du$$
Choosing $cos(4u)=sin^4(u)-6cos^2(u)sin^2(u)+cos^4(4)$
transforming into
$$2int_0^pi/4sec^2(u)cdot frac[tan^2(u)-2tan(u)-1][tan^2(u)+2tan(u)-1]ln^2(tan(u))(1+tan^2(u))^3du$$
Choosing
$v=tan(u)$
$mathrm du=frac1sec^2(u)mathrm dv$
$$2int_0^inftyfrac(v^2-2v-1)(v^2+2v-1)ln^2(v)(1+v^2)^3mathrm dv$$
$$2int_0^inftyfracln^2(v)1+v^2dv-4int_0^inftyfracln^2(v)(1+v^2)^2dv+4int_0^inftyfracln^2(v)(1+v^2)^3dv$$
I was thinking of applying binomial series, but it can't be don't
how would I continue this?
calculus integration definite-integrals trigonometric-integrals
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I would like to evaluate this integral
$$large int_0^pi/2cos(2x)ln^2(tan(x/2))mathrm dx$$
Choosing
$u=fracx2$
$mathrm dx=2mathrm du$
$$2int_0^pi/4cos(4u)ln^2(tan u)mathrm du$$
Choosing $cos(4u)=sin^4(u)-6cos^2(u)sin^2(u)+cos^4(4)$
transforming into
$$2int_0^pi/4sec^2(u)cdot frac[tan^2(u)-2tan(u)-1][tan^2(u)+2tan(u)-1]ln^2(tan(u))(1+tan^2(u))^3du$$
Choosing
$v=tan(u)$
$mathrm du=frac1sec^2(u)mathrm dv$
$$2int_0^inftyfrac(v^2-2v-1)(v^2+2v-1)ln^2(v)(1+v^2)^3mathrm dv$$
$$2int_0^inftyfracln^2(v)1+v^2dv-4int_0^inftyfracln^2(v)(1+v^2)^2dv+4int_0^inftyfracln^2(v)(1+v^2)^3dv$$
I was thinking of applying binomial series, but it can't be don't
how would I continue this?
calculus integration definite-integrals trigonometric-integrals
I would like to evaluate this integral
$$large int_0^pi/2cos(2x)ln^2(tan(x/2))mathrm dx$$
Choosing
$u=fracx2$
$mathrm dx=2mathrm du$
$$2int_0^pi/4cos(4u)ln^2(tan u)mathrm du$$
Choosing $cos(4u)=sin^4(u)-6cos^2(u)sin^2(u)+cos^4(4)$
transforming into
$$2int_0^pi/4sec^2(u)cdot frac[tan^2(u)-2tan(u)-1][tan^2(u)+2tan(u)-1]ln^2(tan(u))(1+tan^2(u))^3du$$
Choosing
$v=tan(u)$
$mathrm du=frac1sec^2(u)mathrm dv$
$$2int_0^inftyfrac(v^2-2v-1)(v^2+2v-1)ln^2(v)(1+v^2)^3mathrm dv$$
$$2int_0^inftyfracln^2(v)1+v^2dv-4int_0^inftyfracln^2(v)(1+v^2)^2dv+4int_0^inftyfracln^2(v)(1+v^2)^3dv$$
I was thinking of applying binomial series, but it can't be don't
how would I continue this?
calculus integration definite-integrals trigonometric-integrals
edited Jul 24 at 13:04
Richard
1829
1829
asked Jul 24 at 8:43
user565198
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
3
down vote
Considering $$I=intcos (2 x) log ^2left(tan left(fracx2right)right),dx$$ use integration by parts
$$u=log ^2left(tan left(fracx2right)right)implies du=2 csc (x) log left(tan left(fracx2right)right),dx$$
$$dv=cos(2x),dx implies v=frac12 sin (2 x)$$
$$I=frac12 sin (2 x) log ^2left(tan left(fracx2right)right)-2int cos (x) log left(tan left(fracx2right)right),dx$$ One more integration by parts to get the antiderivative and a beautiful result for the integral.
add a comment |Â
up vote
3
down vote
Although an antiderivative of the integrand is easy to find viz. Claude Leibovici's method, the limits given present a challenge. The integral is $$[frac12sin 2xln^2tanfracx2-2sin xlntanfracx2+2x]^pi/2_0.$$For $n>0$, $lim_xtoinftyx^n e^-x=0$ so $lim_yto 0^+yln^n y=0$. Trigonometric small-angle approximations then reduce the integral to $pi+lim_xto 0(-xln^2fracx2+2xlnfracx2)=pi$.
I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
– Claude Leibovici
Jul 24 at 13:15
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
Considering $$I=intcos (2 x) log ^2left(tan left(fracx2right)right),dx$$ use integration by parts
$$u=log ^2left(tan left(fracx2right)right)implies du=2 csc (x) log left(tan left(fracx2right)right),dx$$
$$dv=cos(2x),dx implies v=frac12 sin (2 x)$$
$$I=frac12 sin (2 x) log ^2left(tan left(fracx2right)right)-2int cos (x) log left(tan left(fracx2right)right),dx$$ One more integration by parts to get the antiderivative and a beautiful result for the integral.
add a comment |Â
up vote
3
down vote
Considering $$I=intcos (2 x) log ^2left(tan left(fracx2right)right),dx$$ use integration by parts
$$u=log ^2left(tan left(fracx2right)right)implies du=2 csc (x) log left(tan left(fracx2right)right),dx$$
$$dv=cos(2x),dx implies v=frac12 sin (2 x)$$
$$I=frac12 sin (2 x) log ^2left(tan left(fracx2right)right)-2int cos (x) log left(tan left(fracx2right)right),dx$$ One more integration by parts to get the antiderivative and a beautiful result for the integral.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Considering $$I=intcos (2 x) log ^2left(tan left(fracx2right)right),dx$$ use integration by parts
$$u=log ^2left(tan left(fracx2right)right)implies du=2 csc (x) log left(tan left(fracx2right)right),dx$$
$$dv=cos(2x),dx implies v=frac12 sin (2 x)$$
$$I=frac12 sin (2 x) log ^2left(tan left(fracx2right)right)-2int cos (x) log left(tan left(fracx2right)right),dx$$ One more integration by parts to get the antiderivative and a beautiful result for the integral.
Considering $$I=intcos (2 x) log ^2left(tan left(fracx2right)right),dx$$ use integration by parts
$$u=log ^2left(tan left(fracx2right)right)implies du=2 csc (x) log left(tan left(fracx2right)right),dx$$
$$dv=cos(2x),dx implies v=frac12 sin (2 x)$$
$$I=frac12 sin (2 x) log ^2left(tan left(fracx2right)right)-2int cos (x) log left(tan left(fracx2right)right),dx$$ One more integration by parts to get the antiderivative and a beautiful result for the integral.
answered Jul 24 at 8:57
Claude Leibovici
111k1055126
111k1055126
add a comment |Â
add a comment |Â
up vote
3
down vote
Although an antiderivative of the integrand is easy to find viz. Claude Leibovici's method, the limits given present a challenge. The integral is $$[frac12sin 2xln^2tanfracx2-2sin xlntanfracx2+2x]^pi/2_0.$$For $n>0$, $lim_xtoinftyx^n e^-x=0$ so $lim_yto 0^+yln^n y=0$. Trigonometric small-angle approximations then reduce the integral to $pi+lim_xto 0(-xln^2fracx2+2xlnfracx2)=pi$.
I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
– Claude Leibovici
Jul 24 at 13:15
add a comment |Â
up vote
3
down vote
Although an antiderivative of the integrand is easy to find viz. Claude Leibovici's method, the limits given present a challenge. The integral is $$[frac12sin 2xln^2tanfracx2-2sin xlntanfracx2+2x]^pi/2_0.$$For $n>0$, $lim_xtoinftyx^n e^-x=0$ so $lim_yto 0^+yln^n y=0$. Trigonometric small-angle approximations then reduce the integral to $pi+lim_xto 0(-xln^2fracx2+2xlnfracx2)=pi$.
I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
– Claude Leibovici
Jul 24 at 13:15
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Although an antiderivative of the integrand is easy to find viz. Claude Leibovici's method, the limits given present a challenge. The integral is $$[frac12sin 2xln^2tanfracx2-2sin xlntanfracx2+2x]^pi/2_0.$$For $n>0$, $lim_xtoinftyx^n e^-x=0$ so $lim_yto 0^+yln^n y=0$. Trigonometric small-angle approximations then reduce the integral to $pi+lim_xto 0(-xln^2fracx2+2xlnfracx2)=pi$.
Although an antiderivative of the integrand is easy to find viz. Claude Leibovici's method, the limits given present a challenge. The integral is $$[frac12sin 2xln^2tanfracx2-2sin xlntanfracx2+2x]^pi/2_0.$$For $n>0$, $lim_xtoinftyx^n e^-x=0$ so $lim_yto 0^+yln^n y=0$. Trigonometric small-angle approximations then reduce the integral to $pi+lim_xto 0(-xln^2fracx2+2xlnfracx2)=pi$.
answered Jul 24 at 12:53
J.G.
13.2k11424
13.2k11424
I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
– Claude Leibovici
Jul 24 at 13:15
add a comment |Â
I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
– Claude Leibovici
Jul 24 at 13:15
I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
– Claude Leibovici
Jul 24 at 13:15
I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
– Claude Leibovici
Jul 24 at 13:15
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861122%2ftrying-to-int-0-pi-2-cos2x-ln2-tanx-2-dx%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password