Trying to $int_0^pi/2cos(2x)ln^2(tan(x/2)) dx$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite
1












I would like to evaluate this integral




$$large int_0^pi/2cos(2x)ln^2(tan(x/2))mathrm dx$$




Choosing



$u=fracx2$



$mathrm dx=2mathrm du$



$$2int_0^pi/4cos(4u)ln^2(tan u)mathrm du$$



Choosing $cos(4u)=sin^4(u)-6cos^2(u)sin^2(u)+cos^4(4)$



transforming into



$$2int_0^pi/4sec^2(u)cdot frac[tan^2(u)-2tan(u)-1][tan^2(u)+2tan(u)-1]ln^2(tan(u))(1+tan^2(u))^3du$$



Choosing



$v=tan(u)$



$mathrm du=frac1sec^2(u)mathrm dv$



$$2int_0^inftyfrac(v^2-2v-1)(v^2+2v-1)ln^2(v)(1+v^2)^3mathrm dv$$



$$2int_0^inftyfracln^2(v)1+v^2dv-4int_0^inftyfracln^2(v)(1+v^2)^2dv+4int_0^inftyfracln^2(v)(1+v^2)^3dv$$



I was thinking of applying binomial series, but it can't be don't



how would I continue this?







share|cite|improve this question

























    up vote
    3
    down vote

    favorite
    1












    I would like to evaluate this integral




    $$large int_0^pi/2cos(2x)ln^2(tan(x/2))mathrm dx$$




    Choosing



    $u=fracx2$



    $mathrm dx=2mathrm du$



    $$2int_0^pi/4cos(4u)ln^2(tan u)mathrm du$$



    Choosing $cos(4u)=sin^4(u)-6cos^2(u)sin^2(u)+cos^4(4)$



    transforming into



    $$2int_0^pi/4sec^2(u)cdot frac[tan^2(u)-2tan(u)-1][tan^2(u)+2tan(u)-1]ln^2(tan(u))(1+tan^2(u))^3du$$



    Choosing



    $v=tan(u)$



    $mathrm du=frac1sec^2(u)mathrm dv$



    $$2int_0^inftyfrac(v^2-2v-1)(v^2+2v-1)ln^2(v)(1+v^2)^3mathrm dv$$



    $$2int_0^inftyfracln^2(v)1+v^2dv-4int_0^inftyfracln^2(v)(1+v^2)^2dv+4int_0^inftyfracln^2(v)(1+v^2)^3dv$$



    I was thinking of applying binomial series, but it can't be don't



    how would I continue this?







    share|cite|improve this question























      up vote
      3
      down vote

      favorite
      1









      up vote
      3
      down vote

      favorite
      1






      1





      I would like to evaluate this integral




      $$large int_0^pi/2cos(2x)ln^2(tan(x/2))mathrm dx$$




      Choosing



      $u=fracx2$



      $mathrm dx=2mathrm du$



      $$2int_0^pi/4cos(4u)ln^2(tan u)mathrm du$$



      Choosing $cos(4u)=sin^4(u)-6cos^2(u)sin^2(u)+cos^4(4)$



      transforming into



      $$2int_0^pi/4sec^2(u)cdot frac[tan^2(u)-2tan(u)-1][tan^2(u)+2tan(u)-1]ln^2(tan(u))(1+tan^2(u))^3du$$



      Choosing



      $v=tan(u)$



      $mathrm du=frac1sec^2(u)mathrm dv$



      $$2int_0^inftyfrac(v^2-2v-1)(v^2+2v-1)ln^2(v)(1+v^2)^3mathrm dv$$



      $$2int_0^inftyfracln^2(v)1+v^2dv-4int_0^inftyfracln^2(v)(1+v^2)^2dv+4int_0^inftyfracln^2(v)(1+v^2)^3dv$$



      I was thinking of applying binomial series, but it can't be don't



      how would I continue this?







      share|cite|improve this question













      I would like to evaluate this integral




      $$large int_0^pi/2cos(2x)ln^2(tan(x/2))mathrm dx$$




      Choosing



      $u=fracx2$



      $mathrm dx=2mathrm du$



      $$2int_0^pi/4cos(4u)ln^2(tan u)mathrm du$$



      Choosing $cos(4u)=sin^4(u)-6cos^2(u)sin^2(u)+cos^4(4)$



      transforming into



      $$2int_0^pi/4sec^2(u)cdot frac[tan^2(u)-2tan(u)-1][tan^2(u)+2tan(u)-1]ln^2(tan(u))(1+tan^2(u))^3du$$



      Choosing



      $v=tan(u)$



      $mathrm du=frac1sec^2(u)mathrm dv$



      $$2int_0^inftyfrac(v^2-2v-1)(v^2+2v-1)ln^2(v)(1+v^2)^3mathrm dv$$



      $$2int_0^inftyfracln^2(v)1+v^2dv-4int_0^inftyfracln^2(v)(1+v^2)^2dv+4int_0^inftyfracln^2(v)(1+v^2)^3dv$$



      I was thinking of applying binomial series, but it can't be don't



      how would I continue this?









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 24 at 13:04









      Richard

      1829




      1829









      asked Jul 24 at 8:43







      user565198



























          2 Answers
          2






          active

          oldest

          votes

















          up vote
          3
          down vote













          Considering $$I=intcos (2 x) log ^2left(tan left(fracx2right)right),dx$$ use integration by parts
          $$u=log ^2left(tan left(fracx2right)right)implies du=2 csc (x) log left(tan left(fracx2right)right),dx$$
          $$dv=cos(2x),dx implies v=frac12 sin (2 x)$$
          $$I=frac12 sin (2 x) log ^2left(tan left(fracx2right)right)-2int cos (x) log left(tan left(fracx2right)right),dx$$ One more integration by parts to get the antiderivative and a beautiful result for the integral.






          share|cite|improve this answer




























            up vote
            3
            down vote













            Although an antiderivative of the integrand is easy to find viz. Claude Leibovici's method, the limits given present a challenge. The integral is $$[frac12sin 2xln^2tanfracx2-2sin xlntanfracx2+2x]^pi/2_0.$$For $n>0$, $lim_xtoinftyx^n e^-x=0$ so $lim_yto 0^+yln^n y=0$. Trigonometric small-angle approximations then reduce the integral to $pi+lim_xto 0(-xln^2fracx2+2xlnfracx2)=pi$.






            share|cite|improve this answer





















            • I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
              – Claude Leibovici
              Jul 24 at 13:15










            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861122%2ftrying-to-int-0-pi-2-cos2x-ln2-tanx-2-dx%23new-answer', 'question_page');

            );

            Post as a guest





























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            3
            down vote













            Considering $$I=intcos (2 x) log ^2left(tan left(fracx2right)right),dx$$ use integration by parts
            $$u=log ^2left(tan left(fracx2right)right)implies du=2 csc (x) log left(tan left(fracx2right)right),dx$$
            $$dv=cos(2x),dx implies v=frac12 sin (2 x)$$
            $$I=frac12 sin (2 x) log ^2left(tan left(fracx2right)right)-2int cos (x) log left(tan left(fracx2right)right),dx$$ One more integration by parts to get the antiderivative and a beautiful result for the integral.






            share|cite|improve this answer

























              up vote
              3
              down vote













              Considering $$I=intcos (2 x) log ^2left(tan left(fracx2right)right),dx$$ use integration by parts
              $$u=log ^2left(tan left(fracx2right)right)implies du=2 csc (x) log left(tan left(fracx2right)right),dx$$
              $$dv=cos(2x),dx implies v=frac12 sin (2 x)$$
              $$I=frac12 sin (2 x) log ^2left(tan left(fracx2right)right)-2int cos (x) log left(tan left(fracx2right)right),dx$$ One more integration by parts to get the antiderivative and a beautiful result for the integral.






              share|cite|improve this answer























                up vote
                3
                down vote










                up vote
                3
                down vote









                Considering $$I=intcos (2 x) log ^2left(tan left(fracx2right)right),dx$$ use integration by parts
                $$u=log ^2left(tan left(fracx2right)right)implies du=2 csc (x) log left(tan left(fracx2right)right),dx$$
                $$dv=cos(2x),dx implies v=frac12 sin (2 x)$$
                $$I=frac12 sin (2 x) log ^2left(tan left(fracx2right)right)-2int cos (x) log left(tan left(fracx2right)right),dx$$ One more integration by parts to get the antiderivative and a beautiful result for the integral.






                share|cite|improve this answer













                Considering $$I=intcos (2 x) log ^2left(tan left(fracx2right)right),dx$$ use integration by parts
                $$u=log ^2left(tan left(fracx2right)right)implies du=2 csc (x) log left(tan left(fracx2right)right),dx$$
                $$dv=cos(2x),dx implies v=frac12 sin (2 x)$$
                $$I=frac12 sin (2 x) log ^2left(tan left(fracx2right)right)-2int cos (x) log left(tan left(fracx2right)right),dx$$ One more integration by parts to get the antiderivative and a beautiful result for the integral.







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Jul 24 at 8:57









                Claude Leibovici

                111k1055126




                111k1055126




















                    up vote
                    3
                    down vote













                    Although an antiderivative of the integrand is easy to find viz. Claude Leibovici's method, the limits given present a challenge. The integral is $$[frac12sin 2xln^2tanfracx2-2sin xlntanfracx2+2x]^pi/2_0.$$For $n>0$, $lim_xtoinftyx^n e^-x=0$ so $lim_yto 0^+yln^n y=0$. Trigonometric small-angle approximations then reduce the integral to $pi+lim_xto 0(-xln^2fracx2+2xlnfracx2)=pi$.






                    share|cite|improve this answer





















                    • I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
                      – Claude Leibovici
                      Jul 24 at 13:15














                    up vote
                    3
                    down vote













                    Although an antiderivative of the integrand is easy to find viz. Claude Leibovici's method, the limits given present a challenge. The integral is $$[frac12sin 2xln^2tanfracx2-2sin xlntanfracx2+2x]^pi/2_0.$$For $n>0$, $lim_xtoinftyx^n e^-x=0$ so $lim_yto 0^+yln^n y=0$. Trigonometric small-angle approximations then reduce the integral to $pi+lim_xto 0(-xln^2fracx2+2xlnfracx2)=pi$.






                    share|cite|improve this answer





















                    • I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
                      – Claude Leibovici
                      Jul 24 at 13:15












                    up vote
                    3
                    down vote










                    up vote
                    3
                    down vote









                    Although an antiderivative of the integrand is easy to find viz. Claude Leibovici's method, the limits given present a challenge. The integral is $$[frac12sin 2xln^2tanfracx2-2sin xlntanfracx2+2x]^pi/2_0.$$For $n>0$, $lim_xtoinftyx^n e^-x=0$ so $lim_yto 0^+yln^n y=0$. Trigonometric small-angle approximations then reduce the integral to $pi+lim_xto 0(-xln^2fracx2+2xlnfracx2)=pi$.






                    share|cite|improve this answer













                    Although an antiderivative of the integrand is easy to find viz. Claude Leibovici's method, the limits given present a challenge. The integral is $$[frac12sin 2xln^2tanfracx2-2sin xlntanfracx2+2x]^pi/2_0.$$For $n>0$, $lim_xtoinftyx^n e^-x=0$ so $lim_yto 0^+yln^n y=0$. Trigonometric small-angle approximations then reduce the integral to $pi+lim_xto 0(-xln^2fracx2+2xlnfracx2)=pi$.







                    share|cite|improve this answer













                    share|cite|improve this answer



                    share|cite|improve this answer











                    answered Jul 24 at 12:53









                    J.G.

                    13.2k11424




                    13.2k11424











                    • I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
                      – Claude Leibovici
                      Jul 24 at 13:15
















                    • I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
                      – Claude Leibovici
                      Jul 24 at 13:15















                    I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
                    – Claude Leibovici
                    Jul 24 at 13:15




                    I agree with you. The series expansion built at $x=0$ is "quite" nice. By the way, $+1$. Cheers.
                    – Claude Leibovici
                    Jul 24 at 13:15












                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861122%2ftrying-to-int-0-pi-2-cos2x-ln2-tanx-2-dx%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    What is the equation of a 3D cone with generalised tilt?

                    Color the edges and diagonals of a regular polygon

                    Relationship between determinant of matrix and determinant of adjoint?