Variant of Euler-Mascheroni constants
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
For any positive integers $kgeq 1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $textA_k$ to be the following constant :
$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$
Is it possible to evaluate $textA_1$ and $textA_2$ in closed-form ?
binomial-coefficients zeta-functions eulers-constant
add a comment |Â
up vote
2
down vote
favorite
For any positive integers $kgeq 1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $textA_k$ to be the following constant :
$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$
Is it possible to evaluate $textA_1$ and $textA_2$ in closed-form ?
binomial-coefficients zeta-functions eulers-constant
An answer of this question will help to find the closed form of some intresting fractional part integrals.
– Kays Tomy
Jul 31 at 9:07
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
For any positive integers $kgeq 1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $textA_k$ to be the following constant :
$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$
Is it possible to evaluate $textA_1$ and $textA_2$ in closed-form ?
binomial-coefficients zeta-functions eulers-constant
For any positive integers $kgeq 1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $textA_k$ to be the following constant :
$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$
Is it possible to evaluate $textA_1$ and $textA_2$ in closed-form ?
binomial-coefficients zeta-functions eulers-constant
edited Jul 31 at 1:19
asked Jul 31 at 1:11
Kays Tomy
753
753
An answer of this question will help to find the closed form of some intresting fractional part integrals.
– Kays Tomy
Jul 31 at 9:07
add a comment |Â
An answer of this question will help to find the closed form of some intresting fractional part integrals.
– Kays Tomy
Jul 31 at 9:07
An answer of this question will help to find the closed form of some intresting fractional part integrals.
– Kays Tomy
Jul 31 at 9:07
An answer of this question will help to find the closed form of some intresting fractional part integrals.
– Kays Tomy
Jul 31 at 9:07
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
Theorem
For any positive integers $kgeq1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $(textA_k)_kgeq1$ by the following constants "which are variants of Stieltjes constants" :
$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$
Then following a straightforward calculus we can get the following identity :
$$int_0^1int_0^1int_0^1biggx,y,z+frac1x,y,zbiggdx,dy,dz=frac138-gamma-textA_1-fractextA_22$$
And more generally we have :
$$int_0^1int_0^1dotsint_0^1biggprod_k=1^nx_k+frac1prod_k=1^nx_kbiggdx_1,dx_2dots,dx_n=frac138-gamma-sum_j=1^n-1fractextA_jj!$$
Where $gamma$ represents the Euler-Mascheroni constant and $$ denotes the fractional part. If the constants $(textA_k)_kgeq1$ are calculable in closed-form then they will be replaced in the above multiple-integrals.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Theorem
For any positive integers $kgeq1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $(textA_k)_kgeq1$ by the following constants "which are variants of Stieltjes constants" :
$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$
Then following a straightforward calculus we can get the following identity :
$$int_0^1int_0^1int_0^1biggx,y,z+frac1x,y,zbiggdx,dy,dz=frac138-gamma-textA_1-fractextA_22$$
And more generally we have :
$$int_0^1int_0^1dotsint_0^1biggprod_k=1^nx_k+frac1prod_k=1^nx_kbiggdx_1,dx_2dots,dx_n=frac138-gamma-sum_j=1^n-1fractextA_jj!$$
Where $gamma$ represents the Euler-Mascheroni constant and $$ denotes the fractional part. If the constants $(textA_k)_kgeq1$ are calculable in closed-form then they will be replaced in the above multiple-integrals.
add a comment |Â
up vote
0
down vote
Theorem
For any positive integers $kgeq1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $(textA_k)_kgeq1$ by the following constants "which are variants of Stieltjes constants" :
$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$
Then following a straightforward calculus we can get the following identity :
$$int_0^1int_0^1int_0^1biggx,y,z+frac1x,y,zbiggdx,dy,dz=frac138-gamma-textA_1-fractextA_22$$
And more generally we have :
$$int_0^1int_0^1dotsint_0^1biggprod_k=1^nx_k+frac1prod_k=1^nx_kbiggdx_1,dx_2dots,dx_n=frac138-gamma-sum_j=1^n-1fractextA_jj!$$
Where $gamma$ represents the Euler-Mascheroni constant and $$ denotes the fractional part. If the constants $(textA_k)_kgeq1$ are calculable in closed-form then they will be replaced in the above multiple-integrals.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Theorem
For any positive integers $kgeq1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $(textA_k)_kgeq1$ by the following constants "which are variants of Stieltjes constants" :
$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$
Then following a straightforward calculus we can get the following identity :
$$int_0^1int_0^1int_0^1biggx,y,z+frac1x,y,zbiggdx,dy,dz=frac138-gamma-textA_1-fractextA_22$$
And more generally we have :
$$int_0^1int_0^1dotsint_0^1biggprod_k=1^nx_k+frac1prod_k=1^nx_kbiggdx_1,dx_2dots,dx_n=frac138-gamma-sum_j=1^n-1fractextA_jj!$$
Where $gamma$ represents the Euler-Mascheroni constant and $$ denotes the fractional part. If the constants $(textA_k)_kgeq1$ are calculable in closed-form then they will be replaced in the above multiple-integrals.
Theorem
For any positive integers $kgeq1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $(textA_k)_kgeq1$ by the following constants "which are variants of Stieltjes constants" :
$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$
Then following a straightforward calculus we can get the following identity :
$$int_0^1int_0^1int_0^1biggx,y,z+frac1x,y,zbiggdx,dy,dz=frac138-gamma-textA_1-fractextA_22$$
And more generally we have :
$$int_0^1int_0^1dotsint_0^1biggprod_k=1^nx_k+frac1prod_k=1^nx_kbiggdx_1,dx_2dots,dx_n=frac138-gamma-sum_j=1^n-1fractextA_jj!$$
Where $gamma$ represents the Euler-Mascheroni constant and $$ denotes the fractional part. If the constants $(textA_k)_kgeq1$ are calculable in closed-form then they will be replaced in the above multiple-integrals.
answered Aug 1 at 1:11
Kays Tomy
753
753
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867552%2fvariant-of-euler-mascheroni-constants%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
An answer of this question will help to find the closed form of some intresting fractional part integrals.
– Kays Tomy
Jul 31 at 9:07