Variant of Euler-Mascheroni constants

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
1












For any positive integers $kgeq 1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $textA_k$ to be the following constant :



$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$



Is it possible to evaluate $textA_1$ and $textA_2$ in closed-form ?







share|cite|improve this question





















  • An answer of this question will help to find the closed form of some intresting fractional part integrals.
    – Kays Tomy
    Jul 31 at 9:07














up vote
2
down vote

favorite
1












For any positive integers $kgeq 1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $textA_k$ to be the following constant :



$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$



Is it possible to evaluate $textA_1$ and $textA_2$ in closed-form ?







share|cite|improve this question





















  • An answer of this question will help to find the closed form of some intresting fractional part integrals.
    – Kays Tomy
    Jul 31 at 9:07












up vote
2
down vote

favorite
1









up vote
2
down vote

favorite
1






1





For any positive integers $kgeq 1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $textA_k$ to be the following constant :



$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$



Is it possible to evaluate $textA_1$ and $textA_2$ in closed-form ?







share|cite|improve this question













For any positive integers $kgeq 1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $textA_k$ to be the following constant :



$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$



Is it possible to evaluate $textA_1$ and $textA_2$ in closed-form ?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 31 at 1:19
























asked Jul 31 at 1:11









Kays Tomy

753




753











  • An answer of this question will help to find the closed form of some intresting fractional part integrals.
    – Kays Tomy
    Jul 31 at 9:07
















  • An answer of this question will help to find the closed form of some intresting fractional part integrals.
    – Kays Tomy
    Jul 31 at 9:07















An answer of this question will help to find the closed form of some intresting fractional part integrals.
– Kays Tomy
Jul 31 at 9:07




An answer of this question will help to find the closed form of some intresting fractional part integrals.
– Kays Tomy
Jul 31 at 9:07










1 Answer
1






active

oldest

votes

















up vote
0
down vote













Theorem



For any positive integers $kgeq1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $(textA_k)_kgeq1$ by the following constants "which are variants of Stieltjes constants" :



$$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$



Then following a straightforward calculus we can get the following identity :



$$int_0^1int_0^1int_0^1biggx,y,z+frac1x,y,zbiggdx,dy,dz=frac138-gamma-textA_1-fractextA_22$$



And more generally we have :



$$int_0^1int_0^1dotsint_0^1biggprod_k=1^nx_k+frac1prod_k=1^nx_kbiggdx_1,dx_2dots,dx_n=frac138-gamma-sum_j=1^n-1fractextA_jj!$$



Where $gamma$ represents the Euler-Mascheroni constant and $$ denotes the fractional part. If the constants $(textA_k)_kgeq1$ are calculable in closed-form then they will be replaced in the above multiple-integrals.






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867552%2fvariant-of-euler-mascheroni-constants%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Theorem



    For any positive integers $kgeq1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $(textA_k)_kgeq1$ by the following constants "which are variants of Stieltjes constants" :



    $$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$



    Then following a straightforward calculus we can get the following identity :



    $$int_0^1int_0^1int_0^1biggx,y,z+frac1x,y,zbiggdx,dy,dz=frac138-gamma-textA_1-fractextA_22$$



    And more generally we have :



    $$int_0^1int_0^1dotsint_0^1biggprod_k=1^nx_k+frac1prod_k=1^nx_kbiggdx_1,dx_2dots,dx_n=frac138-gamma-sum_j=1^n-1fractextA_jj!$$



    Where $gamma$ represents the Euler-Mascheroni constant and $$ denotes the fractional part. If the constants $(textA_k)_kgeq1$ are calculable in closed-form then they will be replaced in the above multiple-integrals.






    share|cite|improve this answer

























      up vote
      0
      down vote













      Theorem



      For any positive integers $kgeq1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $(textA_k)_kgeq1$ by the following constants "which are variants of Stieltjes constants" :



      $$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$



      Then following a straightforward calculus we can get the following identity :



      $$int_0^1int_0^1int_0^1biggx,y,z+frac1x,y,zbiggdx,dy,dz=frac138-gamma-textA_1-fractextA_22$$



      And more generally we have :



      $$int_0^1int_0^1dotsint_0^1biggprod_k=1^nx_k+frac1prod_k=1^nx_kbiggdx_1,dx_2dots,dx_n=frac138-gamma-sum_j=1^n-1fractextA_jj!$$



      Where $gamma$ represents the Euler-Mascheroni constant and $$ denotes the fractional part. If the constants $(textA_k)_kgeq1$ are calculable in closed-form then they will be replaced in the above multiple-integrals.






      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        Theorem



        For any positive integers $kgeq1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $(textA_k)_kgeq1$ by the following constants "which are variants of Stieltjes constants" :



        $$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$



        Then following a straightforward calculus we can get the following identity :



        $$int_0^1int_0^1int_0^1biggx,y,z+frac1x,y,zbiggdx,dy,dz=frac138-gamma-textA_1-fractextA_22$$



        And more generally we have :



        $$int_0^1int_0^1dotsint_0^1biggprod_k=1^nx_k+frac1prod_k=1^nx_kbiggdx_1,dx_2dots,dx_n=frac138-gamma-sum_j=1^n-1fractextA_jj!$$



        Where $gamma$ represents the Euler-Mascheroni constant and $$ denotes the fractional part. If the constants $(textA_k)_kgeq1$ are calculable in closed-form then they will be replaced in the above multiple-integrals.






        share|cite|improve this answer













        Theorem



        For any positive integers $kgeq1$ and $jgeq2$, let $x_j=fracj+sqrtj^2-42$. Let us define $(textA_k)_kgeq1$ by the following constants "which are variants of Stieltjes constants" :



        $$textA_k = lim_ntoinftybigg(sum_j=2^nfracln^k(x_j)j-fracln^k+1(x_n)k+1bigg)$$



        Then following a straightforward calculus we can get the following identity :



        $$int_0^1int_0^1int_0^1biggx,y,z+frac1x,y,zbiggdx,dy,dz=frac138-gamma-textA_1-fractextA_22$$



        And more generally we have :



        $$int_0^1int_0^1dotsint_0^1biggprod_k=1^nx_k+frac1prod_k=1^nx_kbiggdx_1,dx_2dots,dx_n=frac138-gamma-sum_j=1^n-1fractextA_jj!$$



        Where $gamma$ represents the Euler-Mascheroni constant and $$ denotes the fractional part. If the constants $(textA_k)_kgeq1$ are calculable in closed-form then they will be replaced in the above multiple-integrals.







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Aug 1 at 1:11









        Kays Tomy

        753




        753






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867552%2fvariant-of-euler-mascheroni-constants%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?