Algebraic Inequality involving AM-GM-HM
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
If $$a,b,c ;epsilon ;R^+$$
Then show, $$fracbcb+c + fracaba+b + fracaca+c leq frac12 Bigl(a+b+cBigl)$$
I have solved a couple of problems using AM-GM but I have always struggled with selecting terms for the inequality.
I tried writing $a+b+c$ as $x$ and re-writing the inequality as $$fracbcx-a + fracabx-c + fracacx-b leq frac12 Bigl(xBigl)$$
This didn't help so instead I wrote it as $$2Biggl(frac 1a + frac1b + frac1cBiggl ) leq frac12 Bigl(a+b+cBigl)$$
Not sure what to to do next.
Any help would be appreciated.
inequality a.m.-g.m.-inequality cauchy-schwarz-inequality
add a comment |Â
up vote
2
down vote
favorite
If $$a,b,c ;epsilon ;R^+$$
Then show, $$fracbcb+c + fracaba+b + fracaca+c leq frac12 Bigl(a+b+cBigl)$$
I have solved a couple of problems using AM-GM but I have always struggled with selecting terms for the inequality.
I tried writing $a+b+c$ as $x$ and re-writing the inequality as $$fracbcx-a + fracabx-c + fracacx-b leq frac12 Bigl(xBigl)$$
This didn't help so instead I wrote it as $$2Biggl(frac 1a + frac1b + frac1cBiggl ) leq frac12 Bigl(a+b+cBigl)$$
Not sure what to to do next.
Any help would be appreciated.
inequality a.m.-g.m.-inequality cauchy-schwarz-inequality
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
If $$a,b,c ;epsilon ;R^+$$
Then show, $$fracbcb+c + fracaba+b + fracaca+c leq frac12 Bigl(a+b+cBigl)$$
I have solved a couple of problems using AM-GM but I have always struggled with selecting terms for the inequality.
I tried writing $a+b+c$ as $x$ and re-writing the inequality as $$fracbcx-a + fracabx-c + fracacx-b leq frac12 Bigl(xBigl)$$
This didn't help so instead I wrote it as $$2Biggl(frac 1a + frac1b + frac1cBiggl ) leq frac12 Bigl(a+b+cBigl)$$
Not sure what to to do next.
Any help would be appreciated.
inequality a.m.-g.m.-inequality cauchy-schwarz-inequality
If $$a,b,c ;epsilon ;R^+$$
Then show, $$fracbcb+c + fracaba+b + fracaca+c leq frac12 Bigl(a+b+cBigl)$$
I have solved a couple of problems using AM-GM but I have always struggled with selecting terms for the inequality.
I tried writing $a+b+c$ as $x$ and re-writing the inequality as $$fracbcx-a + fracabx-c + fracacx-b leq frac12 Bigl(xBigl)$$
This didn't help so instead I wrote it as $$2Biggl(frac 1a + frac1b + frac1cBiggl ) leq frac12 Bigl(a+b+cBigl)$$
Not sure what to to do next.
Any help would be appreciated.
inequality a.m.-g.m.-inequality cauchy-schwarz-inequality
edited Jul 24 at 9:43
Michael Rozenberg
87.9k1578180
87.9k1578180
asked Jul 24 at 7:51


Prakhar Nagpal
428315
428315
add a comment |Â
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
3
down vote
Hint: Remember that $HM(a, b)$ can also be written as $dfrac 2aba+b$, which looks a lot like the LHS...
Oh, alright thank you so much.
– Prakhar Nagpal
Jul 24 at 7:57
@PrakharNagpal You're welcome!
– Ovi
Jul 24 at 7:57
add a comment |Â
up vote
1
down vote
Proof
Just by $H_n leq A_n$, we have
beginalign*
fracbcb+c + fracaba+b + fracaca+c&=frac12left(frac2frac1b+frac1c+frac2frac1a+frac1b+frac2frac1a+frac1cright)\&leq frac12left(fracb+c2+fraca+b2+fraca+c2right)\&=fraca+b+c2.
endalign*
add a comment |Â
up vote
1
down vote
Multiply both sides by $4$ and rearrange:
$$fracbcb+c + fracaba+b + fracaca+c leq frac12 Bigl(a+b+cBigl) Rightarrow \
left(a+b-frac4aba+bright)+left(b+c-frac4bcb+cright)+left(c+a-frac4cac+aright)ge 0 Rightarrow \
frac(a-b)^2a+b+frac(b-c)^2b+c+frac(c-a)^2c+age 0.$$
+1 Nice, refreshing way to do it
– Ovi
Jul 24 at 17:55
@Ovi, thank you
– farruhota
Jul 24 at 18:03
add a comment |Â
up vote
0
down vote
By C-S
$$sum_cycfracbcb+cleqsum_cycfracbc(1+1)^2left(frac1^2b+frac1^2cright)=fraca+b+c2.$$
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
Hint: Remember that $HM(a, b)$ can also be written as $dfrac 2aba+b$, which looks a lot like the LHS...
Oh, alright thank you so much.
– Prakhar Nagpal
Jul 24 at 7:57
@PrakharNagpal You're welcome!
– Ovi
Jul 24 at 7:57
add a comment |Â
up vote
3
down vote
Hint: Remember that $HM(a, b)$ can also be written as $dfrac 2aba+b$, which looks a lot like the LHS...
Oh, alright thank you so much.
– Prakhar Nagpal
Jul 24 at 7:57
@PrakharNagpal You're welcome!
– Ovi
Jul 24 at 7:57
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Hint: Remember that $HM(a, b)$ can also be written as $dfrac 2aba+b$, which looks a lot like the LHS...
Hint: Remember that $HM(a, b)$ can also be written as $dfrac 2aba+b$, which looks a lot like the LHS...
answered Jul 24 at 7:55


Ovi
11.3k935105
11.3k935105
Oh, alright thank you so much.
– Prakhar Nagpal
Jul 24 at 7:57
@PrakharNagpal You're welcome!
– Ovi
Jul 24 at 7:57
add a comment |Â
Oh, alright thank you so much.
– Prakhar Nagpal
Jul 24 at 7:57
@PrakharNagpal You're welcome!
– Ovi
Jul 24 at 7:57
Oh, alright thank you so much.
– Prakhar Nagpal
Jul 24 at 7:57
Oh, alright thank you so much.
– Prakhar Nagpal
Jul 24 at 7:57
@PrakharNagpal You're welcome!
– Ovi
Jul 24 at 7:57
@PrakharNagpal You're welcome!
– Ovi
Jul 24 at 7:57
add a comment |Â
up vote
1
down vote
Proof
Just by $H_n leq A_n$, we have
beginalign*
fracbcb+c + fracaba+b + fracaca+c&=frac12left(frac2frac1b+frac1c+frac2frac1a+frac1b+frac2frac1a+frac1cright)\&leq frac12left(fracb+c2+fraca+b2+fraca+c2right)\&=fraca+b+c2.
endalign*
add a comment |Â
up vote
1
down vote
Proof
Just by $H_n leq A_n$, we have
beginalign*
fracbcb+c + fracaba+b + fracaca+c&=frac12left(frac2frac1b+frac1c+frac2frac1a+frac1b+frac2frac1a+frac1cright)\&leq frac12left(fracb+c2+fraca+b2+fraca+c2right)\&=fraca+b+c2.
endalign*
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Proof
Just by $H_n leq A_n$, we have
beginalign*
fracbcb+c + fracaba+b + fracaca+c&=frac12left(frac2frac1b+frac1c+frac2frac1a+frac1b+frac2frac1a+frac1cright)\&leq frac12left(fracb+c2+fraca+b2+fraca+c2right)\&=fraca+b+c2.
endalign*
Proof
Just by $H_n leq A_n$, we have
beginalign*
fracbcb+c + fracaba+b + fracaca+c&=frac12left(frac2frac1b+frac1c+frac2frac1a+frac1b+frac2frac1a+frac1cright)\&leq frac12left(fracb+c2+fraca+b2+fraca+c2right)\&=fraca+b+c2.
endalign*
edited Jul 24 at 10:58
answered Jul 24 at 10:53
mengdie1982
2,877216
2,877216
add a comment |Â
add a comment |Â
up vote
1
down vote
Multiply both sides by $4$ and rearrange:
$$fracbcb+c + fracaba+b + fracaca+c leq frac12 Bigl(a+b+cBigl) Rightarrow \
left(a+b-frac4aba+bright)+left(b+c-frac4bcb+cright)+left(c+a-frac4cac+aright)ge 0 Rightarrow \
frac(a-b)^2a+b+frac(b-c)^2b+c+frac(c-a)^2c+age 0.$$
+1 Nice, refreshing way to do it
– Ovi
Jul 24 at 17:55
@Ovi, thank you
– farruhota
Jul 24 at 18:03
add a comment |Â
up vote
1
down vote
Multiply both sides by $4$ and rearrange:
$$fracbcb+c + fracaba+b + fracaca+c leq frac12 Bigl(a+b+cBigl) Rightarrow \
left(a+b-frac4aba+bright)+left(b+c-frac4bcb+cright)+left(c+a-frac4cac+aright)ge 0 Rightarrow \
frac(a-b)^2a+b+frac(b-c)^2b+c+frac(c-a)^2c+age 0.$$
+1 Nice, refreshing way to do it
– Ovi
Jul 24 at 17:55
@Ovi, thank you
– farruhota
Jul 24 at 18:03
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Multiply both sides by $4$ and rearrange:
$$fracbcb+c + fracaba+b + fracaca+c leq frac12 Bigl(a+b+cBigl) Rightarrow \
left(a+b-frac4aba+bright)+left(b+c-frac4bcb+cright)+left(c+a-frac4cac+aright)ge 0 Rightarrow \
frac(a-b)^2a+b+frac(b-c)^2b+c+frac(c-a)^2c+age 0.$$
Multiply both sides by $4$ and rearrange:
$$fracbcb+c + fracaba+b + fracaca+c leq frac12 Bigl(a+b+cBigl) Rightarrow \
left(a+b-frac4aba+bright)+left(b+c-frac4bcb+cright)+left(c+a-frac4cac+aright)ge 0 Rightarrow \
frac(a-b)^2a+b+frac(b-c)^2b+c+frac(c-a)^2c+age 0.$$
answered Jul 24 at 12:33


farruhota
13.6k2632
13.6k2632
+1 Nice, refreshing way to do it
– Ovi
Jul 24 at 17:55
@Ovi, thank you
– farruhota
Jul 24 at 18:03
add a comment |Â
+1 Nice, refreshing way to do it
– Ovi
Jul 24 at 17:55
@Ovi, thank you
– farruhota
Jul 24 at 18:03
+1 Nice, refreshing way to do it
– Ovi
Jul 24 at 17:55
+1 Nice, refreshing way to do it
– Ovi
Jul 24 at 17:55
@Ovi, thank you
– farruhota
Jul 24 at 18:03
@Ovi, thank you
– farruhota
Jul 24 at 18:03
add a comment |Â
up vote
0
down vote
By C-S
$$sum_cycfracbcb+cleqsum_cycfracbc(1+1)^2left(frac1^2b+frac1^2cright)=fraca+b+c2.$$
add a comment |Â
up vote
0
down vote
By C-S
$$sum_cycfracbcb+cleqsum_cycfracbc(1+1)^2left(frac1^2b+frac1^2cright)=fraca+b+c2.$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
By C-S
$$sum_cycfracbcb+cleqsum_cycfracbc(1+1)^2left(frac1^2b+frac1^2cright)=fraca+b+c2.$$
By C-S
$$sum_cycfracbcb+cleqsum_cycfracbc(1+1)^2left(frac1^2b+frac1^2cright)=fraca+b+c2.$$
answered Jul 24 at 9:40
Michael Rozenberg
87.9k1578180
87.9k1578180
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861098%2falgebraic-inequality-involving-am-gm-hm%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password