Double fractional part integral

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite












Let $$ denote the fractional part, does the following integral have a closed form ?
$$int_0^1int_0^1biggfrac1x,ybigg^2dx,dy$$







share|cite|improve this question



















  • Probably duplicate: math.stackexchange.com/questions/875076/…
    – Mariusz Iwaniuk
    Jul 19 at 15:17










  • @MariuszIwaniuk thank you for the update. I do not know that existed before already.
    – Kays Tomy
    Jul 19 at 16:30














up vote
3
down vote

favorite












Let $$ denote the fractional part, does the following integral have a closed form ?
$$int_0^1int_0^1biggfrac1x,ybigg^2dx,dy$$







share|cite|improve this question



















  • Probably duplicate: math.stackexchange.com/questions/875076/…
    – Mariusz Iwaniuk
    Jul 19 at 15:17










  • @MariuszIwaniuk thank you for the update. I do not know that existed before already.
    – Kays Tomy
    Jul 19 at 16:30












up vote
3
down vote

favorite









up vote
3
down vote

favorite











Let $$ denote the fractional part, does the following integral have a closed form ?
$$int_0^1int_0^1biggfrac1x,ybigg^2dx,dy$$







share|cite|improve this question











Let $$ denote the fractional part, does the following integral have a closed form ?
$$int_0^1int_0^1biggfrac1x,ybigg^2dx,dy$$









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 19 at 6:35









Kays Tomy

934




934











  • Probably duplicate: math.stackexchange.com/questions/875076/…
    – Mariusz Iwaniuk
    Jul 19 at 15:17










  • @MariuszIwaniuk thank you for the update. I do not know that existed before already.
    – Kays Tomy
    Jul 19 at 16:30
















  • Probably duplicate: math.stackexchange.com/questions/875076/…
    – Mariusz Iwaniuk
    Jul 19 at 15:17










  • @MariuszIwaniuk thank you for the update. I do not know that existed before already.
    – Kays Tomy
    Jul 19 at 16:30















Probably duplicate: math.stackexchange.com/questions/875076/…
– Mariusz Iwaniuk
Jul 19 at 15:17




Probably duplicate: math.stackexchange.com/questions/875076/…
– Mariusz Iwaniuk
Jul 19 at 15:17












@MariuszIwaniuk thank you for the update. I do not know that existed before already.
– Kays Tomy
Jul 19 at 16:30




@MariuszIwaniuk thank you for the update. I do not know that existed before already.
– Kays Tomy
Jul 19 at 16:30










1 Answer
1






active

oldest

votes

















up vote
1
down vote













This is an incomplete answer that only addresses the 1-dimensional case.



We split the integral into continuous pieces:
$$beginalign
int_0^1 left frac1x right^2 mathrmdx
&= sum_n=1^infty int_frac1n+1^frac1n left frac1x right^2 mathrmdx \\
&= sum_n=1^infty int_frac1n+1^frac1n left( frac1x - nright)^2 mathrmdx \\
&= sum_n=1^infty left( n^2x - 2n ln |x| - frac1x right)biggrrvert_frac1n+1^frac1n \\
&= sum_n=1^infty left( n - 2n ln frac1n - n - fracn^2n+1 + 2n ln frac1n+1 + n + 1 right) \\
&= sum_n=1^infty left( 2n ln fracnn+1 + frac2n + 1n+1 right)
endalign$$



With the aid of computer algebra, we obtain that this series converges to $$ln (2pi) - gamma - 1$$ where $gamma$ is the Euler-Mascheroni constant.






share|cite|improve this answer























  • (+1) and welcome to Math SE!
    – Szeto
    Jul 19 at 14:10






  • 1




    But notice the OP’s integral has a square there.
    – Szeto
    Jul 19 at 14:11










  • @Szeto Thanks, I just noticed and I'm working on a solution.
    – Fytch
    Jul 19 at 14:19










  • $int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$ :)
    – Mariusz Iwaniuk
    Jul 19 at 14:39











  • @MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
    – Fytch
    Jul 19 at 15:16










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856330%2fdouble-fractional-part-integral%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
1
down vote













This is an incomplete answer that only addresses the 1-dimensional case.



We split the integral into continuous pieces:
$$beginalign
int_0^1 left frac1x right^2 mathrmdx
&= sum_n=1^infty int_frac1n+1^frac1n left frac1x right^2 mathrmdx \\
&= sum_n=1^infty int_frac1n+1^frac1n left( frac1x - nright)^2 mathrmdx \\
&= sum_n=1^infty left( n^2x - 2n ln |x| - frac1x right)biggrrvert_frac1n+1^frac1n \\
&= sum_n=1^infty left( n - 2n ln frac1n - n - fracn^2n+1 + 2n ln frac1n+1 + n + 1 right) \\
&= sum_n=1^infty left( 2n ln fracnn+1 + frac2n + 1n+1 right)
endalign$$



With the aid of computer algebra, we obtain that this series converges to $$ln (2pi) - gamma - 1$$ where $gamma$ is the Euler-Mascheroni constant.






share|cite|improve this answer























  • (+1) and welcome to Math SE!
    – Szeto
    Jul 19 at 14:10






  • 1




    But notice the OP’s integral has a square there.
    – Szeto
    Jul 19 at 14:11










  • @Szeto Thanks, I just noticed and I'm working on a solution.
    – Fytch
    Jul 19 at 14:19










  • $int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$ :)
    – Mariusz Iwaniuk
    Jul 19 at 14:39











  • @MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
    – Fytch
    Jul 19 at 15:16














up vote
1
down vote













This is an incomplete answer that only addresses the 1-dimensional case.



We split the integral into continuous pieces:
$$beginalign
int_0^1 left frac1x right^2 mathrmdx
&= sum_n=1^infty int_frac1n+1^frac1n left frac1x right^2 mathrmdx \\
&= sum_n=1^infty int_frac1n+1^frac1n left( frac1x - nright)^2 mathrmdx \\
&= sum_n=1^infty left( n^2x - 2n ln |x| - frac1x right)biggrrvert_frac1n+1^frac1n \\
&= sum_n=1^infty left( n - 2n ln frac1n - n - fracn^2n+1 + 2n ln frac1n+1 + n + 1 right) \\
&= sum_n=1^infty left( 2n ln fracnn+1 + frac2n + 1n+1 right)
endalign$$



With the aid of computer algebra, we obtain that this series converges to $$ln (2pi) - gamma - 1$$ where $gamma$ is the Euler-Mascheroni constant.






share|cite|improve this answer























  • (+1) and welcome to Math SE!
    – Szeto
    Jul 19 at 14:10






  • 1




    But notice the OP’s integral has a square there.
    – Szeto
    Jul 19 at 14:11










  • @Szeto Thanks, I just noticed and I'm working on a solution.
    – Fytch
    Jul 19 at 14:19










  • $int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$ :)
    – Mariusz Iwaniuk
    Jul 19 at 14:39











  • @MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
    – Fytch
    Jul 19 at 15:16












up vote
1
down vote










up vote
1
down vote









This is an incomplete answer that only addresses the 1-dimensional case.



We split the integral into continuous pieces:
$$beginalign
int_0^1 left frac1x right^2 mathrmdx
&= sum_n=1^infty int_frac1n+1^frac1n left frac1x right^2 mathrmdx \\
&= sum_n=1^infty int_frac1n+1^frac1n left( frac1x - nright)^2 mathrmdx \\
&= sum_n=1^infty left( n^2x - 2n ln |x| - frac1x right)biggrrvert_frac1n+1^frac1n \\
&= sum_n=1^infty left( n - 2n ln frac1n - n - fracn^2n+1 + 2n ln frac1n+1 + n + 1 right) \\
&= sum_n=1^infty left( 2n ln fracnn+1 + frac2n + 1n+1 right)
endalign$$



With the aid of computer algebra, we obtain that this series converges to $$ln (2pi) - gamma - 1$$ where $gamma$ is the Euler-Mascheroni constant.






share|cite|improve this answer















This is an incomplete answer that only addresses the 1-dimensional case.



We split the integral into continuous pieces:
$$beginalign
int_0^1 left frac1x right^2 mathrmdx
&= sum_n=1^infty int_frac1n+1^frac1n left frac1x right^2 mathrmdx \\
&= sum_n=1^infty int_frac1n+1^frac1n left( frac1x - nright)^2 mathrmdx \\
&= sum_n=1^infty left( n^2x - 2n ln |x| - frac1x right)biggrrvert_frac1n+1^frac1n \\
&= sum_n=1^infty left( n - 2n ln frac1n - n - fracn^2n+1 + 2n ln frac1n+1 + n + 1 right) \\
&= sum_n=1^infty left( 2n ln fracnn+1 + frac2n + 1n+1 right)
endalign$$



With the aid of computer algebra, we obtain that this series converges to $$ln (2pi) - gamma - 1$$ where $gamma$ is the Euler-Mascheroni constant.







share|cite|improve this answer















share|cite|improve this answer



share|cite|improve this answer








edited Jul 19 at 15:47


























answered Jul 19 at 14:04









Fytch

159117




159117











  • (+1) and welcome to Math SE!
    – Szeto
    Jul 19 at 14:10






  • 1




    But notice the OP’s integral has a square there.
    – Szeto
    Jul 19 at 14:11










  • @Szeto Thanks, I just noticed and I'm working on a solution.
    – Fytch
    Jul 19 at 14:19










  • $int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$ :)
    – Mariusz Iwaniuk
    Jul 19 at 14:39











  • @MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
    – Fytch
    Jul 19 at 15:16
















  • (+1) and welcome to Math SE!
    – Szeto
    Jul 19 at 14:10






  • 1




    But notice the OP’s integral has a square there.
    – Szeto
    Jul 19 at 14:11










  • @Szeto Thanks, I just noticed and I'm working on a solution.
    – Fytch
    Jul 19 at 14:19










  • $int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$ :)
    – Mariusz Iwaniuk
    Jul 19 at 14:39











  • @MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
    – Fytch
    Jul 19 at 15:16















(+1) and welcome to Math SE!
– Szeto
Jul 19 at 14:10




(+1) and welcome to Math SE!
– Szeto
Jul 19 at 14:10




1




1




But notice the OP’s integral has a square there.
– Szeto
Jul 19 at 14:11




But notice the OP’s integral has a square there.
– Szeto
Jul 19 at 14:11












@Szeto Thanks, I just noticed and I'm working on a solution.
– Fytch
Jul 19 at 14:19




@Szeto Thanks, I just noticed and I'm working on a solution.
– Fytch
Jul 19 at 14:19












$int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$ :)
– Mariusz Iwaniuk
Jul 19 at 14:39





$int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$ :)
– Mariusz Iwaniuk
Jul 19 at 14:39













@MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
– Fytch
Jul 19 at 15:16




@MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
– Fytch
Jul 19 at 15:16












 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856330%2fdouble-fractional-part-integral%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?