Double fractional part integral
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
Let $$ denote the fractional part, does the following integral have a closed form ?
$$int_0^1int_0^1biggfrac1x,ybigg^2dx,dy$$
integration sequences-and-series definite-integrals fractional-part
add a comment |Â
up vote
3
down vote
favorite
Let $$ denote the fractional part, does the following integral have a closed form ?
$$int_0^1int_0^1biggfrac1x,ybigg^2dx,dy$$
integration sequences-and-series definite-integrals fractional-part
Probably duplicate: math.stackexchange.com/questions/875076/…
– Mariusz Iwaniuk
Jul 19 at 15:17
@MariuszIwaniuk thank you for the update. I do not know that existed before already.
– Kays Tomy
Jul 19 at 16:30
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Let $$ denote the fractional part, does the following integral have a closed form ?
$$int_0^1int_0^1biggfrac1x,ybigg^2dx,dy$$
integration sequences-and-series definite-integrals fractional-part
Let $$ denote the fractional part, does the following integral have a closed form ?
$$int_0^1int_0^1biggfrac1x,ybigg^2dx,dy$$
integration sequences-and-series definite-integrals fractional-part
asked Jul 19 at 6:35
Kays Tomy
934
934
Probably duplicate: math.stackexchange.com/questions/875076/…
– Mariusz Iwaniuk
Jul 19 at 15:17
@MariuszIwaniuk thank you for the update. I do not know that existed before already.
– Kays Tomy
Jul 19 at 16:30
add a comment |Â
Probably duplicate: math.stackexchange.com/questions/875076/…
– Mariusz Iwaniuk
Jul 19 at 15:17
@MariuszIwaniuk thank you for the update. I do not know that existed before already.
– Kays Tomy
Jul 19 at 16:30
Probably duplicate: math.stackexchange.com/questions/875076/…
– Mariusz Iwaniuk
Jul 19 at 15:17
Probably duplicate: math.stackexchange.com/questions/875076/…
– Mariusz Iwaniuk
Jul 19 at 15:17
@MariuszIwaniuk thank you for the update. I do not know that existed before already.
– Kays Tomy
Jul 19 at 16:30
@MariuszIwaniuk thank you for the update. I do not know that existed before already.
– Kays Tomy
Jul 19 at 16:30
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
This is an incomplete answer that only addresses the 1-dimensional case.
We split the integral into continuous pieces:
$$beginalign
int_0^1 left frac1x right^2 mathrmdx
&= sum_n=1^infty int_frac1n+1^frac1n left frac1x right^2 mathrmdx \\
&= sum_n=1^infty int_frac1n+1^frac1n left( frac1x - nright)^2 mathrmdx \\
&= sum_n=1^infty left( n^2x - 2n ln |x| - frac1x right)biggrrvert_frac1n+1^frac1n \\
&= sum_n=1^infty left( n - 2n ln frac1n - n - fracn^2n+1 + 2n ln frac1n+1 + n + 1 right) \\
&= sum_n=1^infty left( 2n ln fracnn+1 + frac2n + 1n+1 right)
endalign$$
With the aid of computer algebra, we obtain that this series converges to $$ln (2pi) - gamma - 1$$ where $gamma$ is the Euler-Mascheroni constant.
(+1) and welcome to Math SE!
– Szeto
Jul 19 at 14:10
1
But notice the OP’s integral has a square there.
– Szeto
Jul 19 at 14:11
@Szeto Thanks, I just noticed and I'm working on a solution.
– Fytch
Jul 19 at 14:19
$int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$:)
– Mariusz Iwaniuk
Jul 19 at 14:39
@MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
– Fytch
Jul 19 at 15:16
 |Â
show 4 more comments
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
This is an incomplete answer that only addresses the 1-dimensional case.
We split the integral into continuous pieces:
$$beginalign
int_0^1 left frac1x right^2 mathrmdx
&= sum_n=1^infty int_frac1n+1^frac1n left frac1x right^2 mathrmdx \\
&= sum_n=1^infty int_frac1n+1^frac1n left( frac1x - nright)^2 mathrmdx \\
&= sum_n=1^infty left( n^2x - 2n ln |x| - frac1x right)biggrrvert_frac1n+1^frac1n \\
&= sum_n=1^infty left( n - 2n ln frac1n - n - fracn^2n+1 + 2n ln frac1n+1 + n + 1 right) \\
&= sum_n=1^infty left( 2n ln fracnn+1 + frac2n + 1n+1 right)
endalign$$
With the aid of computer algebra, we obtain that this series converges to $$ln (2pi) - gamma - 1$$ where $gamma$ is the Euler-Mascheroni constant.
(+1) and welcome to Math SE!
– Szeto
Jul 19 at 14:10
1
But notice the OP’s integral has a square there.
– Szeto
Jul 19 at 14:11
@Szeto Thanks, I just noticed and I'm working on a solution.
– Fytch
Jul 19 at 14:19
$int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$:)
– Mariusz Iwaniuk
Jul 19 at 14:39
@MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
– Fytch
Jul 19 at 15:16
 |Â
show 4 more comments
up vote
1
down vote
This is an incomplete answer that only addresses the 1-dimensional case.
We split the integral into continuous pieces:
$$beginalign
int_0^1 left frac1x right^2 mathrmdx
&= sum_n=1^infty int_frac1n+1^frac1n left frac1x right^2 mathrmdx \\
&= sum_n=1^infty int_frac1n+1^frac1n left( frac1x - nright)^2 mathrmdx \\
&= sum_n=1^infty left( n^2x - 2n ln |x| - frac1x right)biggrrvert_frac1n+1^frac1n \\
&= sum_n=1^infty left( n - 2n ln frac1n - n - fracn^2n+1 + 2n ln frac1n+1 + n + 1 right) \\
&= sum_n=1^infty left( 2n ln fracnn+1 + frac2n + 1n+1 right)
endalign$$
With the aid of computer algebra, we obtain that this series converges to $$ln (2pi) - gamma - 1$$ where $gamma$ is the Euler-Mascheroni constant.
(+1) and welcome to Math SE!
– Szeto
Jul 19 at 14:10
1
But notice the OP’s integral has a square there.
– Szeto
Jul 19 at 14:11
@Szeto Thanks, I just noticed and I'm working on a solution.
– Fytch
Jul 19 at 14:19
$int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$:)
– Mariusz Iwaniuk
Jul 19 at 14:39
@MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
– Fytch
Jul 19 at 15:16
 |Â
show 4 more comments
up vote
1
down vote
up vote
1
down vote
This is an incomplete answer that only addresses the 1-dimensional case.
We split the integral into continuous pieces:
$$beginalign
int_0^1 left frac1x right^2 mathrmdx
&= sum_n=1^infty int_frac1n+1^frac1n left frac1x right^2 mathrmdx \\
&= sum_n=1^infty int_frac1n+1^frac1n left( frac1x - nright)^2 mathrmdx \\
&= sum_n=1^infty left( n^2x - 2n ln |x| - frac1x right)biggrrvert_frac1n+1^frac1n \\
&= sum_n=1^infty left( n - 2n ln frac1n - n - fracn^2n+1 + 2n ln frac1n+1 + n + 1 right) \\
&= sum_n=1^infty left( 2n ln fracnn+1 + frac2n + 1n+1 right)
endalign$$
With the aid of computer algebra, we obtain that this series converges to $$ln (2pi) - gamma - 1$$ where $gamma$ is the Euler-Mascheroni constant.
This is an incomplete answer that only addresses the 1-dimensional case.
We split the integral into continuous pieces:
$$beginalign
int_0^1 left frac1x right^2 mathrmdx
&= sum_n=1^infty int_frac1n+1^frac1n left frac1x right^2 mathrmdx \\
&= sum_n=1^infty int_frac1n+1^frac1n left( frac1x - nright)^2 mathrmdx \\
&= sum_n=1^infty left( n^2x - 2n ln |x| - frac1x right)biggrrvert_frac1n+1^frac1n \\
&= sum_n=1^infty left( n - 2n ln frac1n - n - fracn^2n+1 + 2n ln frac1n+1 + n + 1 right) \\
&= sum_n=1^infty left( 2n ln fracnn+1 + frac2n + 1n+1 right)
endalign$$
With the aid of computer algebra, we obtain that this series converges to $$ln (2pi) - gamma - 1$$ where $gamma$ is the Euler-Mascheroni constant.
edited Jul 19 at 15:47
answered Jul 19 at 14:04
Fytch
159117
159117
(+1) and welcome to Math SE!
– Szeto
Jul 19 at 14:10
1
But notice the OP’s integral has a square there.
– Szeto
Jul 19 at 14:11
@Szeto Thanks, I just noticed and I'm working on a solution.
– Fytch
Jul 19 at 14:19
$int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$:)
– Mariusz Iwaniuk
Jul 19 at 14:39
@MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
– Fytch
Jul 19 at 15:16
 |Â
show 4 more comments
(+1) and welcome to Math SE!
– Szeto
Jul 19 at 14:10
1
But notice the OP’s integral has a square there.
– Szeto
Jul 19 at 14:11
@Szeto Thanks, I just noticed and I'm working on a solution.
– Fytch
Jul 19 at 14:19
$int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$:)
– Mariusz Iwaniuk
Jul 19 at 14:39
@MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
– Fytch
Jul 19 at 15:16
(+1) and welcome to Math SE!
– Szeto
Jul 19 at 14:10
(+1) and welcome to Math SE!
– Szeto
Jul 19 at 14:10
1
1
But notice the OP’s integral has a square there.
– Szeto
Jul 19 at 14:11
But notice the OP’s integral has a square there.
– Szeto
Jul 19 at 14:11
@Szeto Thanks, I just noticed and I'm working on a solution.
– Fytch
Jul 19 at 14:19
@Szeto Thanks, I just noticed and I'm working on a solution.
– Fytch
Jul 19 at 14:19
$int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$
:)
– Mariusz Iwaniuk
Jul 19 at 14:39
$int_0^1 left frac1x right^2 mathrmdx=-1-gamma +ln (2)+ln (pi )$
:)
– Mariusz Iwaniuk
Jul 19 at 14:39
@MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
– Fytch
Jul 19 at 15:16
@MariuszIwaniuk How did you arrive at that? Did you evaluate the emergent series using complex analysis?
– Fytch
Jul 19 at 15:16
 |Â
show 4 more comments
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856330%2fdouble-fractional-part-integral%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Probably duplicate: math.stackexchange.com/questions/875076/…
– Mariusz Iwaniuk
Jul 19 at 15:17
@MariuszIwaniuk thank you for the update. I do not know that existed before already.
– Kays Tomy
Jul 19 at 16:30