Integration of $int_0^inftye^-(x+x^2)dx$ [closed]
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I have the following integral
$$intlimits_0^inftye^-(x+x^2)dx$$
I am wondering if there is an analytical solution for this integral. Any hints or suggestions?
calculus integration exponential-function
closed as off-topic by Adrian Keister, amWhy, Xander Henderson, Trần Thúc Minh TrÃ, Parcly Taxel Jul 17 at 3:11
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – Adrian Keister, amWhy, Xander Henderson, Trần Thúc Minh TrÃÂ, Parcly Taxel
add a comment |Â
up vote
0
down vote
favorite
I have the following integral
$$intlimits_0^inftye^-(x+x^2)dx$$
I am wondering if there is an analytical solution for this integral. Any hints or suggestions?
calculus integration exponential-function
closed as off-topic by Adrian Keister, amWhy, Xander Henderson, Trần Thúc Minh TrÃ, Parcly Taxel Jul 17 at 3:11
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – Adrian Keister, amWhy, Xander Henderson, Trần Thúc Minh TrÃÂ, Parcly Taxel
5
Write $x^2 + x = (x+1/2)^2 - 1/4$ and substitute $y = x+1/2$.
– Umberto P.
Jul 16 at 18:33
What are your thoughts about that? What have you tried so far?
– Taroccoesbrocco
Jul 16 at 19:20
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have the following integral
$$intlimits_0^inftye^-(x+x^2)dx$$
I am wondering if there is an analytical solution for this integral. Any hints or suggestions?
calculus integration exponential-function
I have the following integral
$$intlimits_0^inftye^-(x+x^2)dx$$
I am wondering if there is an analytical solution for this integral. Any hints or suggestions?
calculus integration exponential-function
edited Jul 16 at 18:39


David G. Stork
7,6912929
7,6912929
asked Jul 16 at 18:25
optimal control
2501413
2501413
closed as off-topic by Adrian Keister, amWhy, Xander Henderson, Trần Thúc Minh TrÃ, Parcly Taxel Jul 17 at 3:11
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – Adrian Keister, amWhy, Xander Henderson, Trần Thúc Minh TrÃÂ, Parcly Taxel
closed as off-topic by Adrian Keister, amWhy, Xander Henderson, Trần Thúc Minh TrÃ, Parcly Taxel Jul 17 at 3:11
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – Adrian Keister, amWhy, Xander Henderson, Trần Thúc Minh TrÃÂ, Parcly Taxel
5
Write $x^2 + x = (x+1/2)^2 - 1/4$ and substitute $y = x+1/2$.
– Umberto P.
Jul 16 at 18:33
What are your thoughts about that? What have you tried so far?
– Taroccoesbrocco
Jul 16 at 19:20
add a comment |Â
5
Write $x^2 + x = (x+1/2)^2 - 1/4$ and substitute $y = x+1/2$.
– Umberto P.
Jul 16 at 18:33
What are your thoughts about that? What have you tried so far?
– Taroccoesbrocco
Jul 16 at 19:20
5
5
Write $x^2 + x = (x+1/2)^2 - 1/4$ and substitute $y = x+1/2$.
– Umberto P.
Jul 16 at 18:33
Write $x^2 + x = (x+1/2)^2 - 1/4$ and substitute $y = x+1/2$.
– Umberto P.
Jul 16 at 18:33
What are your thoughts about that? What have you tried so far?
– Taroccoesbrocco
Jul 16 at 19:20
What are your thoughts about that? What have you tried so far?
– Taroccoesbrocco
Jul 16 at 19:20
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
5
down vote
Complete the square in the exponent and change variables to find:
$$frac12 sqrt[4]e sqrtpi texterfcleft(frac12right)$$
add a comment |Â
up vote
1
down vote
Well, we have:
$$mathcalI_spacetextnleft(textsright):=int_0^inftyexpleft(-left(textscdot x+x^textnright)right)spacetextdxtag1$$
Now, for the $exp$-function we can write:
$$expleft(-left(textscdot x+x^textnright)right)=expleft(-textscdot x-x^textnright)=expleft(-textscdot xright)cdotexpleft(-x^textnright)tag2$$
So, we get:
$$mathcalI_spacetextnleft(textsright)=int_0^inftyexpleft(-textscdot xright)cdotexpleft(-x^textnright)spacetextdxtag3$$
Which is the Laplace transform of $expleft(-x^textnright)$:
$$mathcalI_spacetextnleft(textsright)=mathcalL_xleft[expleft(-x^textnright)right]_left(textsright)tag4$$
Using:
$$expleft(-x^textnright)=sum_textk=0^inftyfracleft(-x^textnright)^textktextk!=sum_textk=0^inftyfracleft(-1right)^textktextk!cdot x^textncdottextktag5$$
We can rewrite equation $left(4right)$:
$$mathcalI_spacetextnleft(textsright)=sum_textk=0^inftyfracleft(-1right)^textktextk!cdotmathcalL_xleft[x^textncdottextkright]_left(textsright)=sum_textk=0^inftyfracleft(-1right)^textktextk!cdotfracGammaleft(1+textncdottextkright)texts^1+textncdottextktag6$$
3
Oh my goodness... you're using a cannon to swat a fly!
– David G. Stork
Jul 16 at 18:34
@DavidG.Stork I think it is a very nice method!
– Jan
Jul 16 at 18:36
add a comment |Â
up vote
1
down vote
$$I=int_0^inftye^-(x+x^2)dx=int_0^inftye^-[(x+0.5)^2-0.25]dx=e^frac14int_0^inftye^-(x+0.5)^2dx$$
$u=x+frac12, du=dx$
$$therefore I=e^frac14int_frac12^inftye^-u^2du=e^frac14left(fracsqrtpi2-int_0^frac12e^-u^2duright)$$
And I think the final integral at the end can maybe expressed in terms of $erf(x)$ or $erfc(x)$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
Complete the square in the exponent and change variables to find:
$$frac12 sqrt[4]e sqrtpi texterfcleft(frac12right)$$
add a comment |Â
up vote
5
down vote
Complete the square in the exponent and change variables to find:
$$frac12 sqrt[4]e sqrtpi texterfcleft(frac12right)$$
add a comment |Â
up vote
5
down vote
up vote
5
down vote
Complete the square in the exponent and change variables to find:
$$frac12 sqrt[4]e sqrtpi texterfcleft(frac12right)$$
Complete the square in the exponent and change variables to find:
$$frac12 sqrt[4]e sqrtpi texterfcleft(frac12right)$$
answered Jul 16 at 18:31


David G. Stork
7,6912929
7,6912929
add a comment |Â
add a comment |Â
up vote
1
down vote
Well, we have:
$$mathcalI_spacetextnleft(textsright):=int_0^inftyexpleft(-left(textscdot x+x^textnright)right)spacetextdxtag1$$
Now, for the $exp$-function we can write:
$$expleft(-left(textscdot x+x^textnright)right)=expleft(-textscdot x-x^textnright)=expleft(-textscdot xright)cdotexpleft(-x^textnright)tag2$$
So, we get:
$$mathcalI_spacetextnleft(textsright)=int_0^inftyexpleft(-textscdot xright)cdotexpleft(-x^textnright)spacetextdxtag3$$
Which is the Laplace transform of $expleft(-x^textnright)$:
$$mathcalI_spacetextnleft(textsright)=mathcalL_xleft[expleft(-x^textnright)right]_left(textsright)tag4$$
Using:
$$expleft(-x^textnright)=sum_textk=0^inftyfracleft(-x^textnright)^textktextk!=sum_textk=0^inftyfracleft(-1right)^textktextk!cdot x^textncdottextktag5$$
We can rewrite equation $left(4right)$:
$$mathcalI_spacetextnleft(textsright)=sum_textk=0^inftyfracleft(-1right)^textktextk!cdotmathcalL_xleft[x^textncdottextkright]_left(textsright)=sum_textk=0^inftyfracleft(-1right)^textktextk!cdotfracGammaleft(1+textncdottextkright)texts^1+textncdottextktag6$$
3
Oh my goodness... you're using a cannon to swat a fly!
– David G. Stork
Jul 16 at 18:34
@DavidG.Stork I think it is a very nice method!
– Jan
Jul 16 at 18:36
add a comment |Â
up vote
1
down vote
Well, we have:
$$mathcalI_spacetextnleft(textsright):=int_0^inftyexpleft(-left(textscdot x+x^textnright)right)spacetextdxtag1$$
Now, for the $exp$-function we can write:
$$expleft(-left(textscdot x+x^textnright)right)=expleft(-textscdot x-x^textnright)=expleft(-textscdot xright)cdotexpleft(-x^textnright)tag2$$
So, we get:
$$mathcalI_spacetextnleft(textsright)=int_0^inftyexpleft(-textscdot xright)cdotexpleft(-x^textnright)spacetextdxtag3$$
Which is the Laplace transform of $expleft(-x^textnright)$:
$$mathcalI_spacetextnleft(textsright)=mathcalL_xleft[expleft(-x^textnright)right]_left(textsright)tag4$$
Using:
$$expleft(-x^textnright)=sum_textk=0^inftyfracleft(-x^textnright)^textktextk!=sum_textk=0^inftyfracleft(-1right)^textktextk!cdot x^textncdottextktag5$$
We can rewrite equation $left(4right)$:
$$mathcalI_spacetextnleft(textsright)=sum_textk=0^inftyfracleft(-1right)^textktextk!cdotmathcalL_xleft[x^textncdottextkright]_left(textsright)=sum_textk=0^inftyfracleft(-1right)^textktextk!cdotfracGammaleft(1+textncdottextkright)texts^1+textncdottextktag6$$
3
Oh my goodness... you're using a cannon to swat a fly!
– David G. Stork
Jul 16 at 18:34
@DavidG.Stork I think it is a very nice method!
– Jan
Jul 16 at 18:36
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Well, we have:
$$mathcalI_spacetextnleft(textsright):=int_0^inftyexpleft(-left(textscdot x+x^textnright)right)spacetextdxtag1$$
Now, for the $exp$-function we can write:
$$expleft(-left(textscdot x+x^textnright)right)=expleft(-textscdot x-x^textnright)=expleft(-textscdot xright)cdotexpleft(-x^textnright)tag2$$
So, we get:
$$mathcalI_spacetextnleft(textsright)=int_0^inftyexpleft(-textscdot xright)cdotexpleft(-x^textnright)spacetextdxtag3$$
Which is the Laplace transform of $expleft(-x^textnright)$:
$$mathcalI_spacetextnleft(textsright)=mathcalL_xleft[expleft(-x^textnright)right]_left(textsright)tag4$$
Using:
$$expleft(-x^textnright)=sum_textk=0^inftyfracleft(-x^textnright)^textktextk!=sum_textk=0^inftyfracleft(-1right)^textktextk!cdot x^textncdottextktag5$$
We can rewrite equation $left(4right)$:
$$mathcalI_spacetextnleft(textsright)=sum_textk=0^inftyfracleft(-1right)^textktextk!cdotmathcalL_xleft[x^textncdottextkright]_left(textsright)=sum_textk=0^inftyfracleft(-1right)^textktextk!cdotfracGammaleft(1+textncdottextkright)texts^1+textncdottextktag6$$
Well, we have:
$$mathcalI_spacetextnleft(textsright):=int_0^inftyexpleft(-left(textscdot x+x^textnright)right)spacetextdxtag1$$
Now, for the $exp$-function we can write:
$$expleft(-left(textscdot x+x^textnright)right)=expleft(-textscdot x-x^textnright)=expleft(-textscdot xright)cdotexpleft(-x^textnright)tag2$$
So, we get:
$$mathcalI_spacetextnleft(textsright)=int_0^inftyexpleft(-textscdot xright)cdotexpleft(-x^textnright)spacetextdxtag3$$
Which is the Laplace transform of $expleft(-x^textnright)$:
$$mathcalI_spacetextnleft(textsright)=mathcalL_xleft[expleft(-x^textnright)right]_left(textsright)tag4$$
Using:
$$expleft(-x^textnright)=sum_textk=0^inftyfracleft(-x^textnright)^textktextk!=sum_textk=0^inftyfracleft(-1right)^textktextk!cdot x^textncdottextktag5$$
We can rewrite equation $left(4right)$:
$$mathcalI_spacetextnleft(textsright)=sum_textk=0^inftyfracleft(-1right)^textktextk!cdotmathcalL_xleft[x^textncdottextkright]_left(textsright)=sum_textk=0^inftyfracleft(-1right)^textktextk!cdotfracGammaleft(1+textncdottextkright)texts^1+textncdottextktag6$$
edited Jul 16 at 18:35
answered Jul 16 at 18:33


Jan
21.6k31239
21.6k31239
3
Oh my goodness... you're using a cannon to swat a fly!
– David G. Stork
Jul 16 at 18:34
@DavidG.Stork I think it is a very nice method!
– Jan
Jul 16 at 18:36
add a comment |Â
3
Oh my goodness... you're using a cannon to swat a fly!
– David G. Stork
Jul 16 at 18:34
@DavidG.Stork I think it is a very nice method!
– Jan
Jul 16 at 18:36
3
3
Oh my goodness... you're using a cannon to swat a fly!
– David G. Stork
Jul 16 at 18:34
Oh my goodness... you're using a cannon to swat a fly!
– David G. Stork
Jul 16 at 18:34
@DavidG.Stork I think it is a very nice method!
– Jan
Jul 16 at 18:36
@DavidG.Stork I think it is a very nice method!
– Jan
Jul 16 at 18:36
add a comment |Â
up vote
1
down vote
$$I=int_0^inftye^-(x+x^2)dx=int_0^inftye^-[(x+0.5)^2-0.25]dx=e^frac14int_0^inftye^-(x+0.5)^2dx$$
$u=x+frac12, du=dx$
$$therefore I=e^frac14int_frac12^inftye^-u^2du=e^frac14left(fracsqrtpi2-int_0^frac12e^-u^2duright)$$
And I think the final integral at the end can maybe expressed in terms of $erf(x)$ or $erfc(x)$
add a comment |Â
up vote
1
down vote
$$I=int_0^inftye^-(x+x^2)dx=int_0^inftye^-[(x+0.5)^2-0.25]dx=e^frac14int_0^inftye^-(x+0.5)^2dx$$
$u=x+frac12, du=dx$
$$therefore I=e^frac14int_frac12^inftye^-u^2du=e^frac14left(fracsqrtpi2-int_0^frac12e^-u^2duright)$$
And I think the final integral at the end can maybe expressed in terms of $erf(x)$ or $erfc(x)$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$$I=int_0^inftye^-(x+x^2)dx=int_0^inftye^-[(x+0.5)^2-0.25]dx=e^frac14int_0^inftye^-(x+0.5)^2dx$$
$u=x+frac12, du=dx$
$$therefore I=e^frac14int_frac12^inftye^-u^2du=e^frac14left(fracsqrtpi2-int_0^frac12e^-u^2duright)$$
And I think the final integral at the end can maybe expressed in terms of $erf(x)$ or $erfc(x)$
$$I=int_0^inftye^-(x+x^2)dx=int_0^inftye^-[(x+0.5)^2-0.25]dx=e^frac14int_0^inftye^-(x+0.5)^2dx$$
$u=x+frac12, du=dx$
$$therefore I=e^frac14int_frac12^inftye^-u^2du=e^frac14left(fracsqrtpi2-int_0^frac12e^-u^2duright)$$
And I think the final integral at the end can maybe expressed in terms of $erf(x)$ or $erfc(x)$
answered Jul 16 at 19:43
Henry Lee
49210
49210
add a comment |Â
add a comment |Â
5
Write $x^2 + x = (x+1/2)^2 - 1/4$ and substitute $y = x+1/2$.
– Umberto P.
Jul 16 at 18:33
What are your thoughts about that? What have you tried so far?
– Taroccoesbrocco
Jul 16 at 19:20