Is there a closed form solution to compute expectation of this time series / stochastic process?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
$
textrmSuppose you have a time series Y_t
textrm which moves via normal random variable boldsymboll_t\\
y_t+1
= left{beginmatrix
0, y_tleq 0
\
max[0, y_tcdot (1+r)+l_t], y_t> 0
endmatrixright.
\\
textrmWhere l_t
sim
textrmN(mu , sigma)
textrm. If we fix
y_0
textrm above 0 and parameters mu
textrm, r, sigma above 0,
\
textrmthen is there a closed form solution for computing the expectation of
Y_T textrm forall textrm T ?
$
stochastic-processes expectation markov-chains time-series
add a comment |Â
up vote
0
down vote
favorite
$
textrmSuppose you have a time series Y_t
textrm which moves via normal random variable boldsymboll_t\\
y_t+1
= left{beginmatrix
0, y_tleq 0
\
max[0, y_tcdot (1+r)+l_t], y_t> 0
endmatrixright.
\\
textrmWhere l_t
sim
textrmN(mu , sigma)
textrm. If we fix
y_0
textrm above 0 and parameters mu
textrm, r, sigma above 0,
\
textrmthen is there a closed form solution for computing the expectation of
Y_T textrm forall textrm T ?
$
stochastic-processes expectation markov-chains time-series
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$
textrmSuppose you have a time series Y_t
textrm which moves via normal random variable boldsymboll_t\\
y_t+1
= left{beginmatrix
0, y_tleq 0
\
max[0, y_tcdot (1+r)+l_t], y_t> 0
endmatrixright.
\\
textrmWhere l_t
sim
textrmN(mu , sigma)
textrm. If we fix
y_0
textrm above 0 and parameters mu
textrm, r, sigma above 0,
\
textrmthen is there a closed form solution for computing the expectation of
Y_T textrm forall textrm T ?
$
stochastic-processes expectation markov-chains time-series
$
textrmSuppose you have a time series Y_t
textrm which moves via normal random variable boldsymboll_t\\
y_t+1
= left{beginmatrix
0, y_tleq 0
\
max[0, y_tcdot (1+r)+l_t], y_t> 0
endmatrixright.
\\
textrmWhere l_t
sim
textrmN(mu , sigma)
textrm. If we fix
y_0
textrm above 0 and parameters mu
textrm, r, sigma above 0,
\
textrmthen is there a closed form solution for computing the expectation of
Y_T textrm forall textrm T ?
$
stochastic-processes expectation markov-chains time-series
asked Jul 24 at 17:46
TransMIT
65
65
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861597%2fis-there-a-closed-form-solution-to-compute-expectation-of-this-time-series-sto%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password