$Msubset N$ over Dedekind domain $O$. If module index $[M:N]=0$, then $M=N$?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Let $M,N$ be two torsion free modules over Dedekind domain $O$ with same rank. Suppose $Msubset N$. Then one can talk about module index $[M:N]_O$. Module index is defined in terms of local field automorphism $l_p:M_pto N_p$ which exists by PID. Then $[M_p:N_p]_O_p=det(l_p)O_p=p^k_pO_p$. Then $[M:N]_O=prod_pin Spec(O)p^k_p$.



$textbfQ:$ If $[M:N]_O=O$ for $Nsubset M$, do I know $M=N$? It is clear that $Mcong N$. Do I know this morphism is $M=N$ morphism?







share|cite|improve this question

















  • 1




    Try showing that $M_mathfrak p = N_mathfrak p$ for all primes $mathfrak p$ of $O$.
    – D_S
    Jul 19 at 22:34










  • @D_S Indeed, $M_psubset N_p$ and use PID classification theorem yields the result.
    – user45765
    Jul 19 at 22:38














up vote
1
down vote

favorite












Let $M,N$ be two torsion free modules over Dedekind domain $O$ with same rank. Suppose $Msubset N$. Then one can talk about module index $[M:N]_O$. Module index is defined in terms of local field automorphism $l_p:M_pto N_p$ which exists by PID. Then $[M_p:N_p]_O_p=det(l_p)O_p=p^k_pO_p$. Then $[M:N]_O=prod_pin Spec(O)p^k_p$.



$textbfQ:$ If $[M:N]_O=O$ for $Nsubset M$, do I know $M=N$? It is clear that $Mcong N$. Do I know this morphism is $M=N$ morphism?







share|cite|improve this question

















  • 1




    Try showing that $M_mathfrak p = N_mathfrak p$ for all primes $mathfrak p$ of $O$.
    – D_S
    Jul 19 at 22:34










  • @D_S Indeed, $M_psubset N_p$ and use PID classification theorem yields the result.
    – user45765
    Jul 19 at 22:38












up vote
1
down vote

favorite









up vote
1
down vote

favorite











Let $M,N$ be two torsion free modules over Dedekind domain $O$ with same rank. Suppose $Msubset N$. Then one can talk about module index $[M:N]_O$. Module index is defined in terms of local field automorphism $l_p:M_pto N_p$ which exists by PID. Then $[M_p:N_p]_O_p=det(l_p)O_p=p^k_pO_p$. Then $[M:N]_O=prod_pin Spec(O)p^k_p$.



$textbfQ:$ If $[M:N]_O=O$ for $Nsubset M$, do I know $M=N$? It is clear that $Mcong N$. Do I know this morphism is $M=N$ morphism?







share|cite|improve this question













Let $M,N$ be two torsion free modules over Dedekind domain $O$ with same rank. Suppose $Msubset N$. Then one can talk about module index $[M:N]_O$. Module index is defined in terms of local field automorphism $l_p:M_pto N_p$ which exists by PID. Then $[M_p:N_p]_O_p=det(l_p)O_p=p^k_pO_p$. Then $[M:N]_O=prod_pin Spec(O)p^k_p$.



$textbfQ:$ If $[M:N]_O=O$ for $Nsubset M$, do I know $M=N$? It is clear that $Mcong N$. Do I know this morphism is $M=N$ morphism?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 19 at 22:48









Bernard

110k635103




110k635103









asked Jul 19 at 22:25









user45765

2,1942718




2,1942718







  • 1




    Try showing that $M_mathfrak p = N_mathfrak p$ for all primes $mathfrak p$ of $O$.
    – D_S
    Jul 19 at 22:34










  • @D_S Indeed, $M_psubset N_p$ and use PID classification theorem yields the result.
    – user45765
    Jul 19 at 22:38












  • 1




    Try showing that $M_mathfrak p = N_mathfrak p$ for all primes $mathfrak p$ of $O$.
    – D_S
    Jul 19 at 22:34










  • @D_S Indeed, $M_psubset N_p$ and use PID classification theorem yields the result.
    – user45765
    Jul 19 at 22:38







1




1




Try showing that $M_mathfrak p = N_mathfrak p$ for all primes $mathfrak p$ of $O$.
– D_S
Jul 19 at 22:34




Try showing that $M_mathfrak p = N_mathfrak p$ for all primes $mathfrak p$ of $O$.
– D_S
Jul 19 at 22:34












@D_S Indeed, $M_psubset N_p$ and use PID classification theorem yields the result.
– user45765
Jul 19 at 22:38




@D_S Indeed, $M_psubset N_p$ and use PID classification theorem yields the result.
– user45765
Jul 19 at 22:38















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857093%2fm-subset-n-over-dedekind-domain-o-if-module-index-mn-0-then-m-n%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857093%2fm-subset-n-over-dedekind-domain-o-if-module-index-mn-0-then-m-n%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?