$Msubset N$ over Dedekind domain $O$. If module index $[M:N]=0$, then $M=N$?
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Let $M,N$ be two torsion free modules over Dedekind domain $O$ with same rank. Suppose $Msubset N$. Then one can talk about module index $[M:N]_O$. Module index is defined in terms of local field automorphism $l_p:M_pto N_p$ which exists by PID. Then $[M_p:N_p]_O_p=det(l_p)O_p=p^k_pO_p$. Then $[M:N]_O=prod_pin Spec(O)p^k_p$.
$textbfQ:$ If $[M:N]_O=O$ for $Nsubset M$, do I know $M=N$? It is clear that $Mcong N$. Do I know this morphism is $M=N$ morphism?
abstract-algebra number-theory
add a comment |Â
up vote
1
down vote
favorite
Let $M,N$ be two torsion free modules over Dedekind domain $O$ with same rank. Suppose $Msubset N$. Then one can talk about module index $[M:N]_O$. Module index is defined in terms of local field automorphism $l_p:M_pto N_p$ which exists by PID. Then $[M_p:N_p]_O_p=det(l_p)O_p=p^k_pO_p$. Then $[M:N]_O=prod_pin Spec(O)p^k_p$.
$textbfQ:$ If $[M:N]_O=O$ for $Nsubset M$, do I know $M=N$? It is clear that $Mcong N$. Do I know this morphism is $M=N$ morphism?
abstract-algebra number-theory
1
Try showing that $M_mathfrak p = N_mathfrak p$ for all primes $mathfrak p$ of $O$.
– D_S
Jul 19 at 22:34
@D_S Indeed, $M_psubset N_p$ and use PID classification theorem yields the result.
– user45765
Jul 19 at 22:38
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $M,N$ be two torsion free modules over Dedekind domain $O$ with same rank. Suppose $Msubset N$. Then one can talk about module index $[M:N]_O$. Module index is defined in terms of local field automorphism $l_p:M_pto N_p$ which exists by PID. Then $[M_p:N_p]_O_p=det(l_p)O_p=p^k_pO_p$. Then $[M:N]_O=prod_pin Spec(O)p^k_p$.
$textbfQ:$ If $[M:N]_O=O$ for $Nsubset M$, do I know $M=N$? It is clear that $Mcong N$. Do I know this morphism is $M=N$ morphism?
abstract-algebra number-theory
Let $M,N$ be two torsion free modules over Dedekind domain $O$ with same rank. Suppose $Msubset N$. Then one can talk about module index $[M:N]_O$. Module index is defined in terms of local field automorphism $l_p:M_pto N_p$ which exists by PID. Then $[M_p:N_p]_O_p=det(l_p)O_p=p^k_pO_p$. Then $[M:N]_O=prod_pin Spec(O)p^k_p$.
$textbfQ:$ If $[M:N]_O=O$ for $Nsubset M$, do I know $M=N$? It is clear that $Mcong N$. Do I know this morphism is $M=N$ morphism?
abstract-algebra number-theory
edited Jul 19 at 22:48
Bernard
110k635103
110k635103
asked Jul 19 at 22:25
user45765
2,1942718
2,1942718
1
Try showing that $M_mathfrak p = N_mathfrak p$ for all primes $mathfrak p$ of $O$.
– D_S
Jul 19 at 22:34
@D_S Indeed, $M_psubset N_p$ and use PID classification theorem yields the result.
– user45765
Jul 19 at 22:38
add a comment |Â
1
Try showing that $M_mathfrak p = N_mathfrak p$ for all primes $mathfrak p$ of $O$.
– D_S
Jul 19 at 22:34
@D_S Indeed, $M_psubset N_p$ and use PID classification theorem yields the result.
– user45765
Jul 19 at 22:38
1
1
Try showing that $M_mathfrak p = N_mathfrak p$ for all primes $mathfrak p$ of $O$.
– D_S
Jul 19 at 22:34
Try showing that $M_mathfrak p = N_mathfrak p$ for all primes $mathfrak p$ of $O$.
– D_S
Jul 19 at 22:34
@D_S Indeed, $M_psubset N_p$ and use PID classification theorem yields the result.
– user45765
Jul 19 at 22:38
@D_S Indeed, $M_psubset N_p$ and use PID classification theorem yields the result.
– user45765
Jul 19 at 22:38
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857093%2fm-subset-n-over-dedekind-domain-o-if-module-index-mn-0-then-m-n%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Try showing that $M_mathfrak p = N_mathfrak p$ for all primes $mathfrak p$ of $O$.
– D_S
Jul 19 at 22:34
@D_S Indeed, $M_psubset N_p$ and use PID classification theorem yields the result.
– user45765
Jul 19 at 22:38