Evaluating $int_0^1 log log left(frac1xright) fracdx1+x^2$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
32
down vote

favorite
33












Show that $displaystyleint_0^1 log log left(frac1xright) fracdx1+x^2 = fracpi2log left(sqrt2pi Gammaleft(frac34right) / Gammaleft(frac14right)right)$



This question was posted as part of this question:



Solve the integral $S_k = (-1)^k int_0^1 (log(sin pi x))^k dx$



I cannot think of a change of variable nor other integrating methods. May be there is a known method that I am missing.







share|cite|improve this question





















  • @PeterT.off: That isn't true at all.
    – Eric Naslund
    Mar 18 '12 at 12:18










  • For some variants of this integral see C.J. Malmsten.
    – Raymond Manzoni
    Mar 9 '14 at 19:30














up vote
32
down vote

favorite
33












Show that $displaystyleint_0^1 log log left(frac1xright) fracdx1+x^2 = fracpi2log left(sqrt2pi Gammaleft(frac34right) / Gammaleft(frac14right)right)$



This question was posted as part of this question:



Solve the integral $S_k = (-1)^k int_0^1 (log(sin pi x))^k dx$



I cannot think of a change of variable nor other integrating methods. May be there is a known method that I am missing.







share|cite|improve this question





















  • @PeterT.off: That isn't true at all.
    – Eric Naslund
    Mar 18 '12 at 12:18










  • For some variants of this integral see C.J. Malmsten.
    – Raymond Manzoni
    Mar 9 '14 at 19:30












up vote
32
down vote

favorite
33









up vote
32
down vote

favorite
33






33





Show that $displaystyleint_0^1 log log left(frac1xright) fracdx1+x^2 = fracpi2log left(sqrt2pi Gammaleft(frac34right) / Gammaleft(frac14right)right)$



This question was posted as part of this question:



Solve the integral $S_k = (-1)^k int_0^1 (log(sin pi x))^k dx$



I cannot think of a change of variable nor other integrating methods. May be there is a known method that I am missing.







share|cite|improve this question













Show that $displaystyleint_0^1 log log left(frac1xright) fracdx1+x^2 = fracpi2log left(sqrt2pi Gammaleft(frac34right) / Gammaleft(frac14right)right)$



This question was posted as part of this question:



Solve the integral $S_k = (-1)^k int_0^1 (log(sin pi x))^k dx$



I cannot think of a change of variable nor other integrating methods. May be there is a known method that I am missing.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Apr 13 '17 at 12:21









Community♦

1




1









asked Mar 18 '12 at 0:44









Kirthi Raman

6,2702855




6,2702855











  • @PeterT.off: That isn't true at all.
    – Eric Naslund
    Mar 18 '12 at 12:18










  • For some variants of this integral see C.J. Malmsten.
    – Raymond Manzoni
    Mar 9 '14 at 19:30
















  • @PeterT.off: That isn't true at all.
    – Eric Naslund
    Mar 18 '12 at 12:18










  • For some variants of this integral see C.J. Malmsten.
    – Raymond Manzoni
    Mar 9 '14 at 19:30















@PeterT.off: That isn't true at all.
– Eric Naslund
Mar 18 '12 at 12:18




@PeterT.off: That isn't true at all.
– Eric Naslund
Mar 18 '12 at 12:18












For some variants of this integral see C.J. Malmsten.
– Raymond Manzoni
Mar 9 '14 at 19:30




For some variants of this integral see C.J. Malmsten.
– Raymond Manzoni
Mar 9 '14 at 19:30










4 Answers
4






active

oldest

votes

















up vote
43
down vote



accepted










By the substitution $x = e^-t$, we find that



$$beginalign*
int_0^1 frac(log (1/x))^s1+x^2 ; dx
&= int_0^infty fract^s e^-t1 + e^-2t ; dt \
&= int_0^infty sum_n=0^infty (-1)^n t^s e^-(2n+1)t ; dt \
&= sum_n=0^infty (-1)^n , fracGamma(s+1)(2n+1)^s+1 \
&= Gamma(s+1)L(s+1, chi_4),
endalign*$$



where $L(s, chi_4)$ is the Dirichlet L-function of the unique non-principal character $chi_4$ to the modulus 4. Often it is denoted as $beta(s)$ and called the Dirichlet beta function. Thus differentiating both sides with respect to $s$ and plugging $s = 0$, we obtain a representation formula



$$int_0^1 fraclog log (1/x)1+x^2 ; dx = psi_0(1) beta(1) + beta'(1),$$



and the problem reduces to find the value of $beta(1)$ and $beta'(1)$. Note that $beta(1) = fracpi4$ is just the Gregory series. For $beta'(1)$, we first notice that the following functional equation holds.



$$ beta(s)=left(fracpi2right)^s-1 Gamma(1-s) cos left( fracpi s2 right),beta(1-s). $$



This follows from the general theory of Dirichlet L-functions, and one can consult with any analytic number theory textbook to find its proof. Therefore it is sufficient to calculate $beta'(0)$. For $0 < s$, we have



$$beginalign*
-beta'(s)
&= sum_n=1^infty left[ fraclog(4n+1)(4n+1)^s - fraclog(4n-1)(4n-1)^s right] \
&= sum_n=1^infty frac1(4n)^s left[ log left( frac4n+14n-1 right) - frac12n right] + 2^-2s-1zeta(s+1) \
& qquad + sum_n=1^infty left( frac1(4n+1)^s - frac1(4n)^s right) log (4n+1) \
& qquad + sum_n=1^infty left( frac1(4n)^s - frac1(4n-1)^s right) log (4n-1) \
& =: A(s) + 2^-2s-1zeta(s+1) + B(s) + C(s).
endalign*$$



We first estimate $B(s)$. As $n to infty$, we have



$$ log left( frac4n4n+1 right) = -frac14n + Oleft( frac1n^2 right), quad log left( frac4n4n-1 right) = frac14n + Oleft( frac1n^2 right). $$



Thus when $s to 0$,



$$beginalign*
B(s)
&= sum_n=1^infty frac1(4n)^s left[ expleft( s log left( frac4n4n+1 right) right) - 1 right] left[ log (4n) - log left(frac4n4n+1 right) right] \
&= sum_n=1^infty frac1(4n)^s left[ - fracs4n + O left(fracs^2n^2 right) right] left[ log (4n) + O left(frac1n right) right] \
&= -s 2^-2s-2 sum_n=1^infty frac1n^s+1 log (4n) + O(s) \
&= s 2^-2s-2 left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).
endalign*$$



Similar consideration also shows that



$$ C(s) = s 2^-2s-2 left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).$$



Thus we have



$$ 2^-2s-1zeta(s+1) + B(s) + C(s) = 2^-2s-1 left[ zeta(s+1) + s zeta'(s+1) - s zeta(s+1) log 4 right] + O(s). $$



But since



$$zeta(1+s) = frac1s + gamma + O(s),$$



we have



$$ lim_sdownarrow 0 left( 2^-2s-1zeta(s+1) + B(s) + C(s) right) = fracgamma2 - log 2.$$



For $A(s)$, the summands are positive with possible finite exceptional terms. Thus the Monotone Convergence Theorem guarantees that



$$ lim_sdownarrow 0 A(s) = sum_n=1^infty left[ log left( frac4n+14n-1 right) - frac12n right]. $$



Let $L$ denote this limit. Then by Stirling's formula,



$$beginalign*
e^L
& stackrelNtoinftysim prod_n=1^N left( frac4n+14n-1 right) e^-1/2n
sim frace^-gamma/2sqrtN prod_n=1^N left( fracn+(1/4)n-(1/4) right) \
& sim frace^-gamma/2sqrtN fracGammaleft(frac34right)Gammaleft(frac54right) fracGammaleft(N+frac54right)Gammaleft(N+frac34right)
sim frace^-gamma/2sqrtN fracGammaleft(frac34right)Gammaleft(frac54right) fracleft( fracN + (5/4)e right)^N+frac54left( fracN + (3/4)e right)^N+frac34 \
& sim e^-gamma/2 fracGammaleft(frac34right)Gammaleft(frac54right)
= 4 e^-gamma/2 fracpi sqrt2Gammaleft(frac14right)^2,
endalign*$$



where we have used the Euler's reflection formula in the last line. Combining all the efforts, we obtain



$$-beta'(0) = log (2 pi sqrt2) - 2 log Gammaleft(frac14right) .$$



Now taking logarithmic differntiation to the functional equation, we have



$$ fracbeta'(s)beta(s) = logleft(fracpi2right) - psi_0 (1-s) - fracpi2 tan left( fracpi s2 right) - fracbeta'(1-s)beta(1-s). $$



Taking $s = 0$, we have



$$ fracbeta'(0)beta(0) = logleft(fracpi2right) + gamma - fracbeta'(1)beta(1) quad Longrightarrow quad beta'(1) = beta(1) left[ logleft(fracpi2right) + gamma - fracbeta'(0)beta(0) right]. $$



But again by the functional equation, we have $beta(0) = frac12$. Therefore



$$ beta'(1) = fracpi4 left[ gamma + 2 log 2 + 3 log pi - 4 log Gammaleft(frac14right) right], $$



and hence



$$ int_0^1 fraclog log (1/x)1+x^2 ; dx = fracpi4 left[ 2 log 2 + 3 log pi - 4 log Gammaleft(frac14right) right], $$



which is identical to the proposed answer.






share|cite|improve this answer























  • Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
    – Eric Naslund
    Mar 18 '12 at 12:18










  • Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^-2s-1zeta(s+1)$ instead of $2^-2s-1zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
    – Eric Naslund
    Mar 18 '12 at 12:29











  • @EricNaslund, thanks for pointing out typos! I will fix it right now.
    – Sangchul Lee
    Mar 18 '12 at 12:32






  • 5




    @sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
    – Eric Naslund
    Apr 14 '12 at 9:33






  • 2




    This is nuts, man.
    – Pedro Tamaroff♦
    Oct 21 '12 at 18:49

















up vote
16
down vote













$newcommand+^dagger
newcommandangles[1]leftlangle #1 rightrangle
newcommandbraces[1]leftlbrace #1 rightrbrace
newcommandbracks[1]leftlbrack #1 rightrbrack
newcommandceil[1],leftlceil #1 rightrceil,
newcommandddrm d
newcommanddowndownarrow
newcommandds[1]displaystyle#1
newcommandequalby[1]#1 atop = atop vphantomhuge A
newcommandexpo[1],rm e^#1,
newcommandfermi,rm f
newcommandfloor[1],leftlfloor #1 rightrfloor,
newcommandhalf1 over 2
newcommandicrm i
newcommandiffLongleftrightarrow
newcommandimpLongrightarrow
newcommandisdiv,left.rightvert,
newcommandket[1]leftvert #1rightrangle
newcommandol[1]overline#1
newcommandpars[1]left( #1 right)
newcommandpartiald[3]fracpartial^#1 #2partial #3^#1
newcommandppcal P
newcommandroot[2],sqrt[#1],#2,,
newcommandsech,rm sech
newcommandsgn,rm sgn
newcommandtotald[3]fracrm d^#1 #2rm d #3^#1
newcommandul[1]underline#1
newcommandverts[1]leftvert, #1 ,rightvert$
$dsint_0^1lnparslnpars1 over x,dd x over 1 + x^2
=pi over 2,lnparsrootvphantomlarge A2pi,
Gammapars3/4 over Gammapars1/4: Large ?$




With $dsx to 1/x$:
$$
color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
int_infty^1lnparslnparsx,pars-,dd x/x^2 over 1 + 1/x^2
=int_1^inftylnparslnparsx over 1 + x^2,dd x
$$




With $x equiv expotquadiffquad t = lnparsx$:
beginalign
&color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
int_0^inftylnparst over 1 + expo2t,expotdd t
=int_0^inftylnparstexpo-t,1 over 1 + expo-2t,dd t
\[3mm]&=int_0^inftylnparstexpo-t,
sum_ell = 0^inftypars-1^ellexpo-2ell t,dd t
=sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
int_0^inftyt^muexpo-pars2ell + 1t,dd t
\[3mm]&=sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
1 over pars2ell + 1^mu + 1
overbraceint_0^inftyt^muexpo-t,dd t^dsGammaparsmu + 1
endalign
where $Gammaparsz$ is the
Gamma Function.




beginalign
&color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
Gammaparsmu + 1 over pars2ell + 1^mu + 1
\[3mm]&=
lim_mu to 0partialdmubracks%
Gammaparsmu + 1sum_ell = 0^infty
pars-1^ellover pars2ell + 1^mu + 1
\[3mm]&=
lim_mu to 0braces%
Gamma'parsmu + 1sum_ell = 0^infty
pars-1^ellover pars2ell + 1^mu + 1
+Gammaparsmu + 1partialdmubracks%
sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
\[3mm]&=-gammasum_ell = 0^inftypars-1^ellover 2ell + 1
+
lim_mu to 0partialdmu
sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1tag1
endalign
In this result, we used $Psipars1 = -gamma$ and $Gammapars1 = 1$ where
$Psiparsz equiv ddlnGammaparsz/dd z$ is the
Digamma Function and $gamma$ is the
Euler-Mascheroni constant.




The first $ell$-sum in the right member of $pars1$ is given by:
beginalign
&sum_ell = 0pars-^ell over 2ell + 1=
sum_ell = 0pars1 over 4ell + 1 - 1 over 4ell + 3
=1 over 8sum_ell = 01 over parsell + 1/4parsell + 3/4
\[3mm]&=-,1 over 4bracksPsipars1 over 4 - Psipars3 over 4
= pi over 4
endalign
where we used the identities:
beginalign
sum_ell = 0^infty1 over parsell + z_0parsell + z_1
&=Psiparsz_0 - Psiparsz_1 over z_0 - z_1tag1.1
\[3mm]Psiparsz - Psipars1 - z &= -picotparspi ztag1.2
endalign
$$
mboxThen,quad
color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
-,1 over 4,gammapi + lim_mu to 0partialdmu
sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1tag2
$$
Also,
beginalign
sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
&=sum_ell = 0^infty1 over bracks2pars2ell + 1^mu + 1
-sum_ell = 0^infty1 over bracks2pars2ell + 1 + 1^mu + 1
\[3mm]&=2^-2mu - 2bracks%
sum_ell = 0^infty1 over parsell + 1/4^mu + 1
-sum_ell = 0^infty1 over parsell + 3/4^mu + 1
\[3mm]&=2^-2mu - 2bracks%
zetaparsmu + 1,1 over 4 - zetaparsmu + 1,3 over 4
endalign
where $dszetaparss,q equiv sum_n = 0^infty1 over parsq + n^s$
with $Reparss > 1$ and $Reparsq > 0$ i s the
Hurwitz Zeta Function or/and Generalizated Zeta Funcion .



So,
beginalign
&lim_mu to 0partialdmusum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
\[3mm]&=-,1 over 4,lnpars2
underbraceoverbracesum_ell = 0^infty1 over parsell + 3/4parsell + 1/4
^ds2bracksPsipars3/4 - Psipars1/4 = 2pi
_dsmboxSee pars1.1 mboxand pars1.2
+ 1 over 4
overbracepartialdmubracks%
zetaparsmu,1 over 4 - zetaparsmu,3 over 4_mu = 1
^ds-gamma_1pars1/4 + gamma_1pars3/4
endalign
where $gamma_nparsz$ is a
Generalizated Stieltjes Constant
.




With this result, $pars2$ is reduced to:
beginalign
color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2
&=-,1 over 4,braces%
pibracks%
gamma + 2lnpars2 + gamma_1pars1 over 4 - gamma_1pars3 over 4
tag3
endalign
The difference $gamma_1pars1/4 - gamma_1pars3/4$ is evaluated with the 1846 Carl Malmsten identity
:
$$
gamma_1parsm over n - gamma_1pars1 - m over n
=-pibracksgamma + lnpars2pi ncotparsmpi over n
+ 2pisum_ell = 1^n - 1
sinpars2pi m over n,elllnparsGammaparsell over n
$$




With $m = 1$ and $n = 4$:
beginalign
&gamma_1pars1 over 4 - gamma_1pars3 over 4
\[3mm]&=-pibracksgamma + lnpars8picotparspi over 4
+ 2pisum_ell = 1^3sinparspi,ell over 2
lnparsGammaparsell over 4
\[3mm]&=-pibracksgamma + 2lnpars2 + lnpars2pi
\[3mm]&phantom=
+ 2pibrackssinparspi over 2lnparsGammapars1 over 4
+ sinparspilnparsGammapars1 over 2
+ sinpars3pi over 2Gammapars3 over 4
\[3mm]&=-pibracksgamma + 2lnpars2 + lnpars2pi
+2pibrackslnparsGammapars1 over 4 - lnparsGammapars3 over 4
\[3mm]&=-pibracksgamma + 2lnpars2 - 2pibracks%
lnparsroot2pi +lnparsGammapars3 over 4 over Gammapars1 over 4
\[3mm]&=-pibracksgamma + 2lnpars2
-2pilnparsroot2pi,Gammapars3 over 4 over Gammapars1 over 4
endalign




By replacing this result in $pars3$, we find:
$$color#00flarge%
int_0^1lnparslnpars1 over x,dd x over 1 + x^2
=pi over 2,lnparsrootvphantomlarge A2pi,
Gammapars3/4 over Gammapars1/4
$$




As an 'extra-bonus' we can use the identity
$dsGammaparsz = pi over Gammapars1 - zsinparspi z$ to 'kill' one of the $Gamma,$'s functions:
$dsGammapars1 over 4 = root2pi over Gammapars3/4$ which yields:
$$
int_0^1lnparslnpars1 over x,dd x over 1 + x^2
=pi over 2,lnparsGamma^,2pars3/4 over rootpi
$$






share|cite|improve this answer






























    up vote
    5
    down vote













    See also V. Adamchik's formula $$int_0^1 fracx^p-11+x^nlog log frac1xdx = fracgamma+log(2n)2n(psi(fracp2n)-psi(fracn+p2n))+frac12n(zeta'(1,fracp2n)-zeta'(1,fracn+p2n))$$ in http://dx.doi.org/10.1145/258726.258736 .






    share|cite|improve this answer




























      up vote
      4
      down vote













      The above integral was long-time known as the Vardi's integral. Quite recently, an interesting research work devoted to this integral was published by Iaroslav Blagouchine. It appears that this integral was first evaluated by Carl Malmsten in 1842 (and not by Ilan Vardi in 1988). Blagouchine describes two different methods for its evaluation: the original Malmsten's method and the contour integration method. In the same paper, numerous integrals similar to the above one are also treated, and it is shown that many of them may be evaluated by the contour integration methods.



      More recent paper by Blagouchine (mentioned above in the context of Malmsten's formula derived in 1846) is also integersting, but it is less directly related to the integral in question than the first one.






      share|cite|improve this answer























        Your Answer




        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: false,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );








         

        draft saved


        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f121545%2fevaluating-int-01-log-log-left-frac1x-right-fracdx1x2%23new-answer', 'question_page');

        );

        Post as a guest






























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        43
        down vote



        accepted










        By the substitution $x = e^-t$, we find that



        $$beginalign*
        int_0^1 frac(log (1/x))^s1+x^2 ; dx
        &= int_0^infty fract^s e^-t1 + e^-2t ; dt \
        &= int_0^infty sum_n=0^infty (-1)^n t^s e^-(2n+1)t ; dt \
        &= sum_n=0^infty (-1)^n , fracGamma(s+1)(2n+1)^s+1 \
        &= Gamma(s+1)L(s+1, chi_4),
        endalign*$$



        where $L(s, chi_4)$ is the Dirichlet L-function of the unique non-principal character $chi_4$ to the modulus 4. Often it is denoted as $beta(s)$ and called the Dirichlet beta function. Thus differentiating both sides with respect to $s$ and plugging $s = 0$, we obtain a representation formula



        $$int_0^1 fraclog log (1/x)1+x^2 ; dx = psi_0(1) beta(1) + beta'(1),$$



        and the problem reduces to find the value of $beta(1)$ and $beta'(1)$. Note that $beta(1) = fracpi4$ is just the Gregory series. For $beta'(1)$, we first notice that the following functional equation holds.



        $$ beta(s)=left(fracpi2right)^s-1 Gamma(1-s) cos left( fracpi s2 right),beta(1-s). $$



        This follows from the general theory of Dirichlet L-functions, and one can consult with any analytic number theory textbook to find its proof. Therefore it is sufficient to calculate $beta'(0)$. For $0 < s$, we have



        $$beginalign*
        -beta'(s)
        &= sum_n=1^infty left[ fraclog(4n+1)(4n+1)^s - fraclog(4n-1)(4n-1)^s right] \
        &= sum_n=1^infty frac1(4n)^s left[ log left( frac4n+14n-1 right) - frac12n right] + 2^-2s-1zeta(s+1) \
        & qquad + sum_n=1^infty left( frac1(4n+1)^s - frac1(4n)^s right) log (4n+1) \
        & qquad + sum_n=1^infty left( frac1(4n)^s - frac1(4n-1)^s right) log (4n-1) \
        & =: A(s) + 2^-2s-1zeta(s+1) + B(s) + C(s).
        endalign*$$



        We first estimate $B(s)$. As $n to infty$, we have



        $$ log left( frac4n4n+1 right) = -frac14n + Oleft( frac1n^2 right), quad log left( frac4n4n-1 right) = frac14n + Oleft( frac1n^2 right). $$



        Thus when $s to 0$,



        $$beginalign*
        B(s)
        &= sum_n=1^infty frac1(4n)^s left[ expleft( s log left( frac4n4n+1 right) right) - 1 right] left[ log (4n) - log left(frac4n4n+1 right) right] \
        &= sum_n=1^infty frac1(4n)^s left[ - fracs4n + O left(fracs^2n^2 right) right] left[ log (4n) + O left(frac1n right) right] \
        &= -s 2^-2s-2 sum_n=1^infty frac1n^s+1 log (4n) + O(s) \
        &= s 2^-2s-2 left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).
        endalign*$$



        Similar consideration also shows that



        $$ C(s) = s 2^-2s-2 left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).$$



        Thus we have



        $$ 2^-2s-1zeta(s+1) + B(s) + C(s) = 2^-2s-1 left[ zeta(s+1) + s zeta'(s+1) - s zeta(s+1) log 4 right] + O(s). $$



        But since



        $$zeta(1+s) = frac1s + gamma + O(s),$$



        we have



        $$ lim_sdownarrow 0 left( 2^-2s-1zeta(s+1) + B(s) + C(s) right) = fracgamma2 - log 2.$$



        For $A(s)$, the summands are positive with possible finite exceptional terms. Thus the Monotone Convergence Theorem guarantees that



        $$ lim_sdownarrow 0 A(s) = sum_n=1^infty left[ log left( frac4n+14n-1 right) - frac12n right]. $$



        Let $L$ denote this limit. Then by Stirling's formula,



        $$beginalign*
        e^L
        & stackrelNtoinftysim prod_n=1^N left( frac4n+14n-1 right) e^-1/2n
        sim frace^-gamma/2sqrtN prod_n=1^N left( fracn+(1/4)n-(1/4) right) \
        & sim frace^-gamma/2sqrtN fracGammaleft(frac34right)Gammaleft(frac54right) fracGammaleft(N+frac54right)Gammaleft(N+frac34right)
        sim frace^-gamma/2sqrtN fracGammaleft(frac34right)Gammaleft(frac54right) fracleft( fracN + (5/4)e right)^N+frac54left( fracN + (3/4)e right)^N+frac34 \
        & sim e^-gamma/2 fracGammaleft(frac34right)Gammaleft(frac54right)
        = 4 e^-gamma/2 fracpi sqrt2Gammaleft(frac14right)^2,
        endalign*$$



        where we have used the Euler's reflection formula in the last line. Combining all the efforts, we obtain



        $$-beta'(0) = log (2 pi sqrt2) - 2 log Gammaleft(frac14right) .$$



        Now taking logarithmic differntiation to the functional equation, we have



        $$ fracbeta'(s)beta(s) = logleft(fracpi2right) - psi_0 (1-s) - fracpi2 tan left( fracpi s2 right) - fracbeta'(1-s)beta(1-s). $$



        Taking $s = 0$, we have



        $$ fracbeta'(0)beta(0) = logleft(fracpi2right) + gamma - fracbeta'(1)beta(1) quad Longrightarrow quad beta'(1) = beta(1) left[ logleft(fracpi2right) + gamma - fracbeta'(0)beta(0) right]. $$



        But again by the functional equation, we have $beta(0) = frac12$. Therefore



        $$ beta'(1) = fracpi4 left[ gamma + 2 log 2 + 3 log pi - 4 log Gammaleft(frac14right) right], $$



        and hence



        $$ int_0^1 fraclog log (1/x)1+x^2 ; dx = fracpi4 left[ 2 log 2 + 3 log pi - 4 log Gammaleft(frac14right) right], $$



        which is identical to the proposed answer.






        share|cite|improve this answer























        • Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
          – Eric Naslund
          Mar 18 '12 at 12:18










        • Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^-2s-1zeta(s+1)$ instead of $2^-2s-1zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
          – Eric Naslund
          Mar 18 '12 at 12:29











        • @EricNaslund, thanks for pointing out typos! I will fix it right now.
          – Sangchul Lee
          Mar 18 '12 at 12:32






        • 5




          @sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
          – Eric Naslund
          Apr 14 '12 at 9:33






        • 2




          This is nuts, man.
          – Pedro Tamaroff♦
          Oct 21 '12 at 18:49














        up vote
        43
        down vote



        accepted










        By the substitution $x = e^-t$, we find that



        $$beginalign*
        int_0^1 frac(log (1/x))^s1+x^2 ; dx
        &= int_0^infty fract^s e^-t1 + e^-2t ; dt \
        &= int_0^infty sum_n=0^infty (-1)^n t^s e^-(2n+1)t ; dt \
        &= sum_n=0^infty (-1)^n , fracGamma(s+1)(2n+1)^s+1 \
        &= Gamma(s+1)L(s+1, chi_4),
        endalign*$$



        where $L(s, chi_4)$ is the Dirichlet L-function of the unique non-principal character $chi_4$ to the modulus 4. Often it is denoted as $beta(s)$ and called the Dirichlet beta function. Thus differentiating both sides with respect to $s$ and plugging $s = 0$, we obtain a representation formula



        $$int_0^1 fraclog log (1/x)1+x^2 ; dx = psi_0(1) beta(1) + beta'(1),$$



        and the problem reduces to find the value of $beta(1)$ and $beta'(1)$. Note that $beta(1) = fracpi4$ is just the Gregory series. For $beta'(1)$, we first notice that the following functional equation holds.



        $$ beta(s)=left(fracpi2right)^s-1 Gamma(1-s) cos left( fracpi s2 right),beta(1-s). $$



        This follows from the general theory of Dirichlet L-functions, and one can consult with any analytic number theory textbook to find its proof. Therefore it is sufficient to calculate $beta'(0)$. For $0 < s$, we have



        $$beginalign*
        -beta'(s)
        &= sum_n=1^infty left[ fraclog(4n+1)(4n+1)^s - fraclog(4n-1)(4n-1)^s right] \
        &= sum_n=1^infty frac1(4n)^s left[ log left( frac4n+14n-1 right) - frac12n right] + 2^-2s-1zeta(s+1) \
        & qquad + sum_n=1^infty left( frac1(4n+1)^s - frac1(4n)^s right) log (4n+1) \
        & qquad + sum_n=1^infty left( frac1(4n)^s - frac1(4n-1)^s right) log (4n-1) \
        & =: A(s) + 2^-2s-1zeta(s+1) + B(s) + C(s).
        endalign*$$



        We first estimate $B(s)$. As $n to infty$, we have



        $$ log left( frac4n4n+1 right) = -frac14n + Oleft( frac1n^2 right), quad log left( frac4n4n-1 right) = frac14n + Oleft( frac1n^2 right). $$



        Thus when $s to 0$,



        $$beginalign*
        B(s)
        &= sum_n=1^infty frac1(4n)^s left[ expleft( s log left( frac4n4n+1 right) right) - 1 right] left[ log (4n) - log left(frac4n4n+1 right) right] \
        &= sum_n=1^infty frac1(4n)^s left[ - fracs4n + O left(fracs^2n^2 right) right] left[ log (4n) + O left(frac1n right) right] \
        &= -s 2^-2s-2 sum_n=1^infty frac1n^s+1 log (4n) + O(s) \
        &= s 2^-2s-2 left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).
        endalign*$$



        Similar consideration also shows that



        $$ C(s) = s 2^-2s-2 left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).$$



        Thus we have



        $$ 2^-2s-1zeta(s+1) + B(s) + C(s) = 2^-2s-1 left[ zeta(s+1) + s zeta'(s+1) - s zeta(s+1) log 4 right] + O(s). $$



        But since



        $$zeta(1+s) = frac1s + gamma + O(s),$$



        we have



        $$ lim_sdownarrow 0 left( 2^-2s-1zeta(s+1) + B(s) + C(s) right) = fracgamma2 - log 2.$$



        For $A(s)$, the summands are positive with possible finite exceptional terms. Thus the Monotone Convergence Theorem guarantees that



        $$ lim_sdownarrow 0 A(s) = sum_n=1^infty left[ log left( frac4n+14n-1 right) - frac12n right]. $$



        Let $L$ denote this limit. Then by Stirling's formula,



        $$beginalign*
        e^L
        & stackrelNtoinftysim prod_n=1^N left( frac4n+14n-1 right) e^-1/2n
        sim frace^-gamma/2sqrtN prod_n=1^N left( fracn+(1/4)n-(1/4) right) \
        & sim frace^-gamma/2sqrtN fracGammaleft(frac34right)Gammaleft(frac54right) fracGammaleft(N+frac54right)Gammaleft(N+frac34right)
        sim frace^-gamma/2sqrtN fracGammaleft(frac34right)Gammaleft(frac54right) fracleft( fracN + (5/4)e right)^N+frac54left( fracN + (3/4)e right)^N+frac34 \
        & sim e^-gamma/2 fracGammaleft(frac34right)Gammaleft(frac54right)
        = 4 e^-gamma/2 fracpi sqrt2Gammaleft(frac14right)^2,
        endalign*$$



        where we have used the Euler's reflection formula in the last line. Combining all the efforts, we obtain



        $$-beta'(0) = log (2 pi sqrt2) - 2 log Gammaleft(frac14right) .$$



        Now taking logarithmic differntiation to the functional equation, we have



        $$ fracbeta'(s)beta(s) = logleft(fracpi2right) - psi_0 (1-s) - fracpi2 tan left( fracpi s2 right) - fracbeta'(1-s)beta(1-s). $$



        Taking $s = 0$, we have



        $$ fracbeta'(0)beta(0) = logleft(fracpi2right) + gamma - fracbeta'(1)beta(1) quad Longrightarrow quad beta'(1) = beta(1) left[ logleft(fracpi2right) + gamma - fracbeta'(0)beta(0) right]. $$



        But again by the functional equation, we have $beta(0) = frac12$. Therefore



        $$ beta'(1) = fracpi4 left[ gamma + 2 log 2 + 3 log pi - 4 log Gammaleft(frac14right) right], $$



        and hence



        $$ int_0^1 fraclog log (1/x)1+x^2 ; dx = fracpi4 left[ 2 log 2 + 3 log pi - 4 log Gammaleft(frac14right) right], $$



        which is identical to the proposed answer.






        share|cite|improve this answer























        • Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
          – Eric Naslund
          Mar 18 '12 at 12:18










        • Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^-2s-1zeta(s+1)$ instead of $2^-2s-1zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
          – Eric Naslund
          Mar 18 '12 at 12:29











        • @EricNaslund, thanks for pointing out typos! I will fix it right now.
          – Sangchul Lee
          Mar 18 '12 at 12:32






        • 5




          @sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
          – Eric Naslund
          Apr 14 '12 at 9:33






        • 2




          This is nuts, man.
          – Pedro Tamaroff♦
          Oct 21 '12 at 18:49












        up vote
        43
        down vote



        accepted







        up vote
        43
        down vote



        accepted






        By the substitution $x = e^-t$, we find that



        $$beginalign*
        int_0^1 frac(log (1/x))^s1+x^2 ; dx
        &= int_0^infty fract^s e^-t1 + e^-2t ; dt \
        &= int_0^infty sum_n=0^infty (-1)^n t^s e^-(2n+1)t ; dt \
        &= sum_n=0^infty (-1)^n , fracGamma(s+1)(2n+1)^s+1 \
        &= Gamma(s+1)L(s+1, chi_4),
        endalign*$$



        where $L(s, chi_4)$ is the Dirichlet L-function of the unique non-principal character $chi_4$ to the modulus 4. Often it is denoted as $beta(s)$ and called the Dirichlet beta function. Thus differentiating both sides with respect to $s$ and plugging $s = 0$, we obtain a representation formula



        $$int_0^1 fraclog log (1/x)1+x^2 ; dx = psi_0(1) beta(1) + beta'(1),$$



        and the problem reduces to find the value of $beta(1)$ and $beta'(1)$. Note that $beta(1) = fracpi4$ is just the Gregory series. For $beta'(1)$, we first notice that the following functional equation holds.



        $$ beta(s)=left(fracpi2right)^s-1 Gamma(1-s) cos left( fracpi s2 right),beta(1-s). $$



        This follows from the general theory of Dirichlet L-functions, and one can consult with any analytic number theory textbook to find its proof. Therefore it is sufficient to calculate $beta'(0)$. For $0 < s$, we have



        $$beginalign*
        -beta'(s)
        &= sum_n=1^infty left[ fraclog(4n+1)(4n+1)^s - fraclog(4n-1)(4n-1)^s right] \
        &= sum_n=1^infty frac1(4n)^s left[ log left( frac4n+14n-1 right) - frac12n right] + 2^-2s-1zeta(s+1) \
        & qquad + sum_n=1^infty left( frac1(4n+1)^s - frac1(4n)^s right) log (4n+1) \
        & qquad + sum_n=1^infty left( frac1(4n)^s - frac1(4n-1)^s right) log (4n-1) \
        & =: A(s) + 2^-2s-1zeta(s+1) + B(s) + C(s).
        endalign*$$



        We first estimate $B(s)$. As $n to infty$, we have



        $$ log left( frac4n4n+1 right) = -frac14n + Oleft( frac1n^2 right), quad log left( frac4n4n-1 right) = frac14n + Oleft( frac1n^2 right). $$



        Thus when $s to 0$,



        $$beginalign*
        B(s)
        &= sum_n=1^infty frac1(4n)^s left[ expleft( s log left( frac4n4n+1 right) right) - 1 right] left[ log (4n) - log left(frac4n4n+1 right) right] \
        &= sum_n=1^infty frac1(4n)^s left[ - fracs4n + O left(fracs^2n^2 right) right] left[ log (4n) + O left(frac1n right) right] \
        &= -s 2^-2s-2 sum_n=1^infty frac1n^s+1 log (4n) + O(s) \
        &= s 2^-2s-2 left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).
        endalign*$$



        Similar consideration also shows that



        $$ C(s) = s 2^-2s-2 left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).$$



        Thus we have



        $$ 2^-2s-1zeta(s+1) + B(s) + C(s) = 2^-2s-1 left[ zeta(s+1) + s zeta'(s+1) - s zeta(s+1) log 4 right] + O(s). $$



        But since



        $$zeta(1+s) = frac1s + gamma + O(s),$$



        we have



        $$ lim_sdownarrow 0 left( 2^-2s-1zeta(s+1) + B(s) + C(s) right) = fracgamma2 - log 2.$$



        For $A(s)$, the summands are positive with possible finite exceptional terms. Thus the Monotone Convergence Theorem guarantees that



        $$ lim_sdownarrow 0 A(s) = sum_n=1^infty left[ log left( frac4n+14n-1 right) - frac12n right]. $$



        Let $L$ denote this limit. Then by Stirling's formula,



        $$beginalign*
        e^L
        & stackrelNtoinftysim prod_n=1^N left( frac4n+14n-1 right) e^-1/2n
        sim frace^-gamma/2sqrtN prod_n=1^N left( fracn+(1/4)n-(1/4) right) \
        & sim frace^-gamma/2sqrtN fracGammaleft(frac34right)Gammaleft(frac54right) fracGammaleft(N+frac54right)Gammaleft(N+frac34right)
        sim frace^-gamma/2sqrtN fracGammaleft(frac34right)Gammaleft(frac54right) fracleft( fracN + (5/4)e right)^N+frac54left( fracN + (3/4)e right)^N+frac34 \
        & sim e^-gamma/2 fracGammaleft(frac34right)Gammaleft(frac54right)
        = 4 e^-gamma/2 fracpi sqrt2Gammaleft(frac14right)^2,
        endalign*$$



        where we have used the Euler's reflection formula in the last line. Combining all the efforts, we obtain



        $$-beta'(0) = log (2 pi sqrt2) - 2 log Gammaleft(frac14right) .$$



        Now taking logarithmic differntiation to the functional equation, we have



        $$ fracbeta'(s)beta(s) = logleft(fracpi2right) - psi_0 (1-s) - fracpi2 tan left( fracpi s2 right) - fracbeta'(1-s)beta(1-s). $$



        Taking $s = 0$, we have



        $$ fracbeta'(0)beta(0) = logleft(fracpi2right) + gamma - fracbeta'(1)beta(1) quad Longrightarrow quad beta'(1) = beta(1) left[ logleft(fracpi2right) + gamma - fracbeta'(0)beta(0) right]. $$



        But again by the functional equation, we have $beta(0) = frac12$. Therefore



        $$ beta'(1) = fracpi4 left[ gamma + 2 log 2 + 3 log pi - 4 log Gammaleft(frac14right) right], $$



        and hence



        $$ int_0^1 fraclog log (1/x)1+x^2 ; dx = fracpi4 left[ 2 log 2 + 3 log pi - 4 log Gammaleft(frac14right) right], $$



        which is identical to the proposed answer.






        share|cite|improve this answer















        By the substitution $x = e^-t$, we find that



        $$beginalign*
        int_0^1 frac(log (1/x))^s1+x^2 ; dx
        &= int_0^infty fract^s e^-t1 + e^-2t ; dt \
        &= int_0^infty sum_n=0^infty (-1)^n t^s e^-(2n+1)t ; dt \
        &= sum_n=0^infty (-1)^n , fracGamma(s+1)(2n+1)^s+1 \
        &= Gamma(s+1)L(s+1, chi_4),
        endalign*$$



        where $L(s, chi_4)$ is the Dirichlet L-function of the unique non-principal character $chi_4$ to the modulus 4. Often it is denoted as $beta(s)$ and called the Dirichlet beta function. Thus differentiating both sides with respect to $s$ and plugging $s = 0$, we obtain a representation formula



        $$int_0^1 fraclog log (1/x)1+x^2 ; dx = psi_0(1) beta(1) + beta'(1),$$



        and the problem reduces to find the value of $beta(1)$ and $beta'(1)$. Note that $beta(1) = fracpi4$ is just the Gregory series. For $beta'(1)$, we first notice that the following functional equation holds.



        $$ beta(s)=left(fracpi2right)^s-1 Gamma(1-s) cos left( fracpi s2 right),beta(1-s). $$



        This follows from the general theory of Dirichlet L-functions, and one can consult with any analytic number theory textbook to find its proof. Therefore it is sufficient to calculate $beta'(0)$. For $0 < s$, we have



        $$beginalign*
        -beta'(s)
        &= sum_n=1^infty left[ fraclog(4n+1)(4n+1)^s - fraclog(4n-1)(4n-1)^s right] \
        &= sum_n=1^infty frac1(4n)^s left[ log left( frac4n+14n-1 right) - frac12n right] + 2^-2s-1zeta(s+1) \
        & qquad + sum_n=1^infty left( frac1(4n+1)^s - frac1(4n)^s right) log (4n+1) \
        & qquad + sum_n=1^infty left( frac1(4n)^s - frac1(4n-1)^s right) log (4n-1) \
        & =: A(s) + 2^-2s-1zeta(s+1) + B(s) + C(s).
        endalign*$$



        We first estimate $B(s)$. As $n to infty$, we have



        $$ log left( frac4n4n+1 right) = -frac14n + Oleft( frac1n^2 right), quad log left( frac4n4n-1 right) = frac14n + Oleft( frac1n^2 right). $$



        Thus when $s to 0$,



        $$beginalign*
        B(s)
        &= sum_n=1^infty frac1(4n)^s left[ expleft( s log left( frac4n4n+1 right) right) - 1 right] left[ log (4n) - log left(frac4n4n+1 right) right] \
        &= sum_n=1^infty frac1(4n)^s left[ - fracs4n + O left(fracs^2n^2 right) right] left[ log (4n) + O left(frac1n right) right] \
        &= -s 2^-2s-2 sum_n=1^infty frac1n^s+1 log (4n) + O(s) \
        &= s 2^-2s-2 left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).
        endalign*$$



        Similar consideration also shows that



        $$ C(s) = s 2^-2s-2 left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).$$



        Thus we have



        $$ 2^-2s-1zeta(s+1) + B(s) + C(s) = 2^-2s-1 left[ zeta(s+1) + s zeta'(s+1) - s zeta(s+1) log 4 right] + O(s). $$



        But since



        $$zeta(1+s) = frac1s + gamma + O(s),$$



        we have



        $$ lim_sdownarrow 0 left( 2^-2s-1zeta(s+1) + B(s) + C(s) right) = fracgamma2 - log 2.$$



        For $A(s)$, the summands are positive with possible finite exceptional terms. Thus the Monotone Convergence Theorem guarantees that



        $$ lim_sdownarrow 0 A(s) = sum_n=1^infty left[ log left( frac4n+14n-1 right) - frac12n right]. $$



        Let $L$ denote this limit. Then by Stirling's formula,



        $$beginalign*
        e^L
        & stackrelNtoinftysim prod_n=1^N left( frac4n+14n-1 right) e^-1/2n
        sim frace^-gamma/2sqrtN prod_n=1^N left( fracn+(1/4)n-(1/4) right) \
        & sim frace^-gamma/2sqrtN fracGammaleft(frac34right)Gammaleft(frac54right) fracGammaleft(N+frac54right)Gammaleft(N+frac34right)
        sim frace^-gamma/2sqrtN fracGammaleft(frac34right)Gammaleft(frac54right) fracleft( fracN + (5/4)e right)^N+frac54left( fracN + (3/4)e right)^N+frac34 \
        & sim e^-gamma/2 fracGammaleft(frac34right)Gammaleft(frac54right)
        = 4 e^-gamma/2 fracpi sqrt2Gammaleft(frac14right)^2,
        endalign*$$



        where we have used the Euler's reflection formula in the last line. Combining all the efforts, we obtain



        $$-beta'(0) = log (2 pi sqrt2) - 2 log Gammaleft(frac14right) .$$



        Now taking logarithmic differntiation to the functional equation, we have



        $$ fracbeta'(s)beta(s) = logleft(fracpi2right) - psi_0 (1-s) - fracpi2 tan left( fracpi s2 right) - fracbeta'(1-s)beta(1-s). $$



        Taking $s = 0$, we have



        $$ fracbeta'(0)beta(0) = logleft(fracpi2right) + gamma - fracbeta'(1)beta(1) quad Longrightarrow quad beta'(1) = beta(1) left[ logleft(fracpi2right) + gamma - fracbeta'(0)beta(0) right]. $$



        But again by the functional equation, we have $beta(0) = frac12$. Therefore



        $$ beta'(1) = fracpi4 left[ gamma + 2 log 2 + 3 log pi - 4 log Gammaleft(frac14right) right], $$



        and hence



        $$ int_0^1 fraclog log (1/x)1+x^2 ; dx = fracpi4 left[ 2 log 2 + 3 log pi - 4 log Gammaleft(frac14right) right], $$



        which is identical to the proposed answer.







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        edited Mar 18 '12 at 13:33


























        answered Mar 18 '12 at 6:48









        Sangchul Lee

        85.6k12155253




        85.6k12155253











        • Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
          – Eric Naslund
          Mar 18 '12 at 12:18










        • Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^-2s-1zeta(s+1)$ instead of $2^-2s-1zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
          – Eric Naslund
          Mar 18 '12 at 12:29











        • @EricNaslund, thanks for pointing out typos! I will fix it right now.
          – Sangchul Lee
          Mar 18 '12 at 12:32






        • 5




          @sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
          – Eric Naslund
          Apr 14 '12 at 9:33






        • 2




          This is nuts, man.
          – Pedro Tamaroff♦
          Oct 21 '12 at 18:49
















        • Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
          – Eric Naslund
          Mar 18 '12 at 12:18










        • Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^-2s-1zeta(s+1)$ instead of $2^-2s-1zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
          – Eric Naslund
          Mar 18 '12 at 12:29











        • @EricNaslund, thanks for pointing out typos! I will fix it right now.
          – Sangchul Lee
          Mar 18 '12 at 12:32






        • 5




          @sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
          – Eric Naslund
          Apr 14 '12 at 9:33






        • 2




          This is nuts, man.
          – Pedro Tamaroff♦
          Oct 21 '12 at 18:49















        Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
        – Eric Naslund
        Mar 18 '12 at 12:18




        Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
        – Eric Naslund
        Mar 18 '12 at 12:18












        Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^-2s-1zeta(s+1)$ instead of $2^-2s-1zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
        – Eric Naslund
        Mar 18 '12 at 12:29





        Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^-2s-1zeta(s+1)$ instead of $2^-2s-1zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
        – Eric Naslund
        Mar 18 '12 at 12:29













        @EricNaslund, thanks for pointing out typos! I will fix it right now.
        – Sangchul Lee
        Mar 18 '12 at 12:32




        @EricNaslund, thanks for pointing out typos! I will fix it right now.
        – Sangchul Lee
        Mar 18 '12 at 12:32




        5




        5




        @sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
        – Eric Naslund
        Apr 14 '12 at 9:33




        @sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
        – Eric Naslund
        Apr 14 '12 at 9:33




        2




        2




        This is nuts, man.
        – Pedro Tamaroff♦
        Oct 21 '12 at 18:49




        This is nuts, man.
        – Pedro Tamaroff♦
        Oct 21 '12 at 18:49










        up vote
        16
        down vote













        $newcommand+^dagger
        newcommandangles[1]leftlangle #1 rightrangle
        newcommandbraces[1]leftlbrace #1 rightrbrace
        newcommandbracks[1]leftlbrack #1 rightrbrack
        newcommandceil[1],leftlceil #1 rightrceil,
        newcommandddrm d
        newcommanddowndownarrow
        newcommandds[1]displaystyle#1
        newcommandequalby[1]#1 atop = atop vphantomhuge A
        newcommandexpo[1],rm e^#1,
        newcommandfermi,rm f
        newcommandfloor[1],leftlfloor #1 rightrfloor,
        newcommandhalf1 over 2
        newcommandicrm i
        newcommandiffLongleftrightarrow
        newcommandimpLongrightarrow
        newcommandisdiv,left.rightvert,
        newcommandket[1]leftvert #1rightrangle
        newcommandol[1]overline#1
        newcommandpars[1]left( #1 right)
        newcommandpartiald[3]fracpartial^#1 #2partial #3^#1
        newcommandppcal P
        newcommandroot[2],sqrt[#1],#2,,
        newcommandsech,rm sech
        newcommandsgn,rm sgn
        newcommandtotald[3]fracrm d^#1 #2rm d #3^#1
        newcommandul[1]underline#1
        newcommandverts[1]leftvert, #1 ,rightvert$
        $dsint_0^1lnparslnpars1 over x,dd x over 1 + x^2
        =pi over 2,lnparsrootvphantomlarge A2pi,
        Gammapars3/4 over Gammapars1/4: Large ?$




        With $dsx to 1/x$:
        $$
        color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
        int_infty^1lnparslnparsx,pars-,dd x/x^2 over 1 + 1/x^2
        =int_1^inftylnparslnparsx over 1 + x^2,dd x
        $$




        With $x equiv expotquadiffquad t = lnparsx$:
        beginalign
        &color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
        int_0^inftylnparst over 1 + expo2t,expotdd t
        =int_0^inftylnparstexpo-t,1 over 1 + expo-2t,dd t
        \[3mm]&=int_0^inftylnparstexpo-t,
        sum_ell = 0^inftypars-1^ellexpo-2ell t,dd t
        =sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
        int_0^inftyt^muexpo-pars2ell + 1t,dd t
        \[3mm]&=sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
        1 over pars2ell + 1^mu + 1
        overbraceint_0^inftyt^muexpo-t,dd t^dsGammaparsmu + 1
        endalign
        where $Gammaparsz$ is the
        Gamma Function.




        beginalign
        &color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
        sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
        Gammaparsmu + 1 over pars2ell + 1^mu + 1
        \[3mm]&=
        lim_mu to 0partialdmubracks%
        Gammaparsmu + 1sum_ell = 0^infty
        pars-1^ellover pars2ell + 1^mu + 1
        \[3mm]&=
        lim_mu to 0braces%
        Gamma'parsmu + 1sum_ell = 0^infty
        pars-1^ellover pars2ell + 1^mu + 1
        +Gammaparsmu + 1partialdmubracks%
        sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
        \[3mm]&=-gammasum_ell = 0^inftypars-1^ellover 2ell + 1
        +
        lim_mu to 0partialdmu
        sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1tag1
        endalign
        In this result, we used $Psipars1 = -gamma$ and $Gammapars1 = 1$ where
        $Psiparsz equiv ddlnGammaparsz/dd z$ is the
        Digamma Function and $gamma$ is the
        Euler-Mascheroni constant.




        The first $ell$-sum in the right member of $pars1$ is given by:
        beginalign
        &sum_ell = 0pars-^ell over 2ell + 1=
        sum_ell = 0pars1 over 4ell + 1 - 1 over 4ell + 3
        =1 over 8sum_ell = 01 over parsell + 1/4parsell + 3/4
        \[3mm]&=-,1 over 4bracksPsipars1 over 4 - Psipars3 over 4
        = pi over 4
        endalign
        where we used the identities:
        beginalign
        sum_ell = 0^infty1 over parsell + z_0parsell + z_1
        &=Psiparsz_0 - Psiparsz_1 over z_0 - z_1tag1.1
        \[3mm]Psiparsz - Psipars1 - z &= -picotparspi ztag1.2
        endalign
        $$
        mboxThen,quad
        color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
        -,1 over 4,gammapi + lim_mu to 0partialdmu
        sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1tag2
        $$
        Also,
        beginalign
        sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
        &=sum_ell = 0^infty1 over bracks2pars2ell + 1^mu + 1
        -sum_ell = 0^infty1 over bracks2pars2ell + 1 + 1^mu + 1
        \[3mm]&=2^-2mu - 2bracks%
        sum_ell = 0^infty1 over parsell + 1/4^mu + 1
        -sum_ell = 0^infty1 over parsell + 3/4^mu + 1
        \[3mm]&=2^-2mu - 2bracks%
        zetaparsmu + 1,1 over 4 - zetaparsmu + 1,3 over 4
        endalign
        where $dszetaparss,q equiv sum_n = 0^infty1 over parsq + n^s$
        with $Reparss > 1$ and $Reparsq > 0$ i s the
        Hurwitz Zeta Function or/and Generalizated Zeta Funcion .



        So,
        beginalign
        &lim_mu to 0partialdmusum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
        \[3mm]&=-,1 over 4,lnpars2
        underbraceoverbracesum_ell = 0^infty1 over parsell + 3/4parsell + 1/4
        ^ds2bracksPsipars3/4 - Psipars1/4 = 2pi
        _dsmboxSee pars1.1 mboxand pars1.2
        + 1 over 4
        overbracepartialdmubracks%
        zetaparsmu,1 over 4 - zetaparsmu,3 over 4_mu = 1
        ^ds-gamma_1pars1/4 + gamma_1pars3/4
        endalign
        where $gamma_nparsz$ is a
        Generalizated Stieltjes Constant
        .




        With this result, $pars2$ is reduced to:
        beginalign
        color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2
        &=-,1 over 4,braces%
        pibracks%
        gamma + 2lnpars2 + gamma_1pars1 over 4 - gamma_1pars3 over 4
        tag3
        endalign
        The difference $gamma_1pars1/4 - gamma_1pars3/4$ is evaluated with the 1846 Carl Malmsten identity
        :
        $$
        gamma_1parsm over n - gamma_1pars1 - m over n
        =-pibracksgamma + lnpars2pi ncotparsmpi over n
        + 2pisum_ell = 1^n - 1
        sinpars2pi m over n,elllnparsGammaparsell over n
        $$




        With $m = 1$ and $n = 4$:
        beginalign
        &gamma_1pars1 over 4 - gamma_1pars3 over 4
        \[3mm]&=-pibracksgamma + lnpars8picotparspi over 4
        + 2pisum_ell = 1^3sinparspi,ell over 2
        lnparsGammaparsell over 4
        \[3mm]&=-pibracksgamma + 2lnpars2 + lnpars2pi
        \[3mm]&phantom=
        + 2pibrackssinparspi over 2lnparsGammapars1 over 4
        + sinparspilnparsGammapars1 over 2
        + sinpars3pi over 2Gammapars3 over 4
        \[3mm]&=-pibracksgamma + 2lnpars2 + lnpars2pi
        +2pibrackslnparsGammapars1 over 4 - lnparsGammapars3 over 4
        \[3mm]&=-pibracksgamma + 2lnpars2 - 2pibracks%
        lnparsroot2pi +lnparsGammapars3 over 4 over Gammapars1 over 4
        \[3mm]&=-pibracksgamma + 2lnpars2
        -2pilnparsroot2pi,Gammapars3 over 4 over Gammapars1 over 4
        endalign




        By replacing this result in $pars3$, we find:
        $$color#00flarge%
        int_0^1lnparslnpars1 over x,dd x over 1 + x^2
        =pi over 2,lnparsrootvphantomlarge A2pi,
        Gammapars3/4 over Gammapars1/4
        $$




        As an 'extra-bonus' we can use the identity
        $dsGammaparsz = pi over Gammapars1 - zsinparspi z$ to 'kill' one of the $Gamma,$'s functions:
        $dsGammapars1 over 4 = root2pi over Gammapars3/4$ which yields:
        $$
        int_0^1lnparslnpars1 over x,dd x over 1 + x^2
        =pi over 2,lnparsGamma^,2pars3/4 over rootpi
        $$






        share|cite|improve this answer



























          up vote
          16
          down vote













          $newcommand+^dagger
          newcommandangles[1]leftlangle #1 rightrangle
          newcommandbraces[1]leftlbrace #1 rightrbrace
          newcommandbracks[1]leftlbrack #1 rightrbrack
          newcommandceil[1],leftlceil #1 rightrceil,
          newcommandddrm d
          newcommanddowndownarrow
          newcommandds[1]displaystyle#1
          newcommandequalby[1]#1 atop = atop vphantomhuge A
          newcommandexpo[1],rm e^#1,
          newcommandfermi,rm f
          newcommandfloor[1],leftlfloor #1 rightrfloor,
          newcommandhalf1 over 2
          newcommandicrm i
          newcommandiffLongleftrightarrow
          newcommandimpLongrightarrow
          newcommandisdiv,left.rightvert,
          newcommandket[1]leftvert #1rightrangle
          newcommandol[1]overline#1
          newcommandpars[1]left( #1 right)
          newcommandpartiald[3]fracpartial^#1 #2partial #3^#1
          newcommandppcal P
          newcommandroot[2],sqrt[#1],#2,,
          newcommandsech,rm sech
          newcommandsgn,rm sgn
          newcommandtotald[3]fracrm d^#1 #2rm d #3^#1
          newcommandul[1]underline#1
          newcommandverts[1]leftvert, #1 ,rightvert$
          $dsint_0^1lnparslnpars1 over x,dd x over 1 + x^2
          =pi over 2,lnparsrootvphantomlarge A2pi,
          Gammapars3/4 over Gammapars1/4: Large ?$




          With $dsx to 1/x$:
          $$
          color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
          int_infty^1lnparslnparsx,pars-,dd x/x^2 over 1 + 1/x^2
          =int_1^inftylnparslnparsx over 1 + x^2,dd x
          $$




          With $x equiv expotquadiffquad t = lnparsx$:
          beginalign
          &color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
          int_0^inftylnparst over 1 + expo2t,expotdd t
          =int_0^inftylnparstexpo-t,1 over 1 + expo-2t,dd t
          \[3mm]&=int_0^inftylnparstexpo-t,
          sum_ell = 0^inftypars-1^ellexpo-2ell t,dd t
          =sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
          int_0^inftyt^muexpo-pars2ell + 1t,dd t
          \[3mm]&=sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
          1 over pars2ell + 1^mu + 1
          overbraceint_0^inftyt^muexpo-t,dd t^dsGammaparsmu + 1
          endalign
          where $Gammaparsz$ is the
          Gamma Function.




          beginalign
          &color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
          sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
          Gammaparsmu + 1 over pars2ell + 1^mu + 1
          \[3mm]&=
          lim_mu to 0partialdmubracks%
          Gammaparsmu + 1sum_ell = 0^infty
          pars-1^ellover pars2ell + 1^mu + 1
          \[3mm]&=
          lim_mu to 0braces%
          Gamma'parsmu + 1sum_ell = 0^infty
          pars-1^ellover pars2ell + 1^mu + 1
          +Gammaparsmu + 1partialdmubracks%
          sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
          \[3mm]&=-gammasum_ell = 0^inftypars-1^ellover 2ell + 1
          +
          lim_mu to 0partialdmu
          sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1tag1
          endalign
          In this result, we used $Psipars1 = -gamma$ and $Gammapars1 = 1$ where
          $Psiparsz equiv ddlnGammaparsz/dd z$ is the
          Digamma Function and $gamma$ is the
          Euler-Mascheroni constant.




          The first $ell$-sum in the right member of $pars1$ is given by:
          beginalign
          &sum_ell = 0pars-^ell over 2ell + 1=
          sum_ell = 0pars1 over 4ell + 1 - 1 over 4ell + 3
          =1 over 8sum_ell = 01 over parsell + 1/4parsell + 3/4
          \[3mm]&=-,1 over 4bracksPsipars1 over 4 - Psipars3 over 4
          = pi over 4
          endalign
          where we used the identities:
          beginalign
          sum_ell = 0^infty1 over parsell + z_0parsell + z_1
          &=Psiparsz_0 - Psiparsz_1 over z_0 - z_1tag1.1
          \[3mm]Psiparsz - Psipars1 - z &= -picotparspi ztag1.2
          endalign
          $$
          mboxThen,quad
          color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
          -,1 over 4,gammapi + lim_mu to 0partialdmu
          sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1tag2
          $$
          Also,
          beginalign
          sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
          &=sum_ell = 0^infty1 over bracks2pars2ell + 1^mu + 1
          -sum_ell = 0^infty1 over bracks2pars2ell + 1 + 1^mu + 1
          \[3mm]&=2^-2mu - 2bracks%
          sum_ell = 0^infty1 over parsell + 1/4^mu + 1
          -sum_ell = 0^infty1 over parsell + 3/4^mu + 1
          \[3mm]&=2^-2mu - 2bracks%
          zetaparsmu + 1,1 over 4 - zetaparsmu + 1,3 over 4
          endalign
          where $dszetaparss,q equiv sum_n = 0^infty1 over parsq + n^s$
          with $Reparss > 1$ and $Reparsq > 0$ i s the
          Hurwitz Zeta Function or/and Generalizated Zeta Funcion .



          So,
          beginalign
          &lim_mu to 0partialdmusum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
          \[3mm]&=-,1 over 4,lnpars2
          underbraceoverbracesum_ell = 0^infty1 over parsell + 3/4parsell + 1/4
          ^ds2bracksPsipars3/4 - Psipars1/4 = 2pi
          _dsmboxSee pars1.1 mboxand pars1.2
          + 1 over 4
          overbracepartialdmubracks%
          zetaparsmu,1 over 4 - zetaparsmu,3 over 4_mu = 1
          ^ds-gamma_1pars1/4 + gamma_1pars3/4
          endalign
          where $gamma_nparsz$ is a
          Generalizated Stieltjes Constant
          .




          With this result, $pars2$ is reduced to:
          beginalign
          color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2
          &=-,1 over 4,braces%
          pibracks%
          gamma + 2lnpars2 + gamma_1pars1 over 4 - gamma_1pars3 over 4
          tag3
          endalign
          The difference $gamma_1pars1/4 - gamma_1pars3/4$ is evaluated with the 1846 Carl Malmsten identity
          :
          $$
          gamma_1parsm over n - gamma_1pars1 - m over n
          =-pibracksgamma + lnpars2pi ncotparsmpi over n
          + 2pisum_ell = 1^n - 1
          sinpars2pi m over n,elllnparsGammaparsell over n
          $$




          With $m = 1$ and $n = 4$:
          beginalign
          &gamma_1pars1 over 4 - gamma_1pars3 over 4
          \[3mm]&=-pibracksgamma + lnpars8picotparspi over 4
          + 2pisum_ell = 1^3sinparspi,ell over 2
          lnparsGammaparsell over 4
          \[3mm]&=-pibracksgamma + 2lnpars2 + lnpars2pi
          \[3mm]&phantom=
          + 2pibrackssinparspi over 2lnparsGammapars1 over 4
          + sinparspilnparsGammapars1 over 2
          + sinpars3pi over 2Gammapars3 over 4
          \[3mm]&=-pibracksgamma + 2lnpars2 + lnpars2pi
          +2pibrackslnparsGammapars1 over 4 - lnparsGammapars3 over 4
          \[3mm]&=-pibracksgamma + 2lnpars2 - 2pibracks%
          lnparsroot2pi +lnparsGammapars3 over 4 over Gammapars1 over 4
          \[3mm]&=-pibracksgamma + 2lnpars2
          -2pilnparsroot2pi,Gammapars3 over 4 over Gammapars1 over 4
          endalign




          By replacing this result in $pars3$, we find:
          $$color#00flarge%
          int_0^1lnparslnpars1 over x,dd x over 1 + x^2
          =pi over 2,lnparsrootvphantomlarge A2pi,
          Gammapars3/4 over Gammapars1/4
          $$




          As an 'extra-bonus' we can use the identity
          $dsGammaparsz = pi over Gammapars1 - zsinparspi z$ to 'kill' one of the $Gamma,$'s functions:
          $dsGammapars1 over 4 = root2pi over Gammapars3/4$ which yields:
          $$
          int_0^1lnparslnpars1 over x,dd x over 1 + x^2
          =pi over 2,lnparsGamma^,2pars3/4 over rootpi
          $$






          share|cite|improve this answer

























            up vote
            16
            down vote










            up vote
            16
            down vote









            $newcommand+^dagger
            newcommandangles[1]leftlangle #1 rightrangle
            newcommandbraces[1]leftlbrace #1 rightrbrace
            newcommandbracks[1]leftlbrack #1 rightrbrack
            newcommandceil[1],leftlceil #1 rightrceil,
            newcommandddrm d
            newcommanddowndownarrow
            newcommandds[1]displaystyle#1
            newcommandequalby[1]#1 atop = atop vphantomhuge A
            newcommandexpo[1],rm e^#1,
            newcommandfermi,rm f
            newcommandfloor[1],leftlfloor #1 rightrfloor,
            newcommandhalf1 over 2
            newcommandicrm i
            newcommandiffLongleftrightarrow
            newcommandimpLongrightarrow
            newcommandisdiv,left.rightvert,
            newcommandket[1]leftvert #1rightrangle
            newcommandol[1]overline#1
            newcommandpars[1]left( #1 right)
            newcommandpartiald[3]fracpartial^#1 #2partial #3^#1
            newcommandppcal P
            newcommandroot[2],sqrt[#1],#2,,
            newcommandsech,rm sech
            newcommandsgn,rm sgn
            newcommandtotald[3]fracrm d^#1 #2rm d #3^#1
            newcommandul[1]underline#1
            newcommandverts[1]leftvert, #1 ,rightvert$
            $dsint_0^1lnparslnpars1 over x,dd x over 1 + x^2
            =pi over 2,lnparsrootvphantomlarge A2pi,
            Gammapars3/4 over Gammapars1/4: Large ?$




            With $dsx to 1/x$:
            $$
            color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
            int_infty^1lnparslnparsx,pars-,dd x/x^2 over 1 + 1/x^2
            =int_1^inftylnparslnparsx over 1 + x^2,dd x
            $$




            With $x equiv expotquadiffquad t = lnparsx$:
            beginalign
            &color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
            int_0^inftylnparst over 1 + expo2t,expotdd t
            =int_0^inftylnparstexpo-t,1 over 1 + expo-2t,dd t
            \[3mm]&=int_0^inftylnparstexpo-t,
            sum_ell = 0^inftypars-1^ellexpo-2ell t,dd t
            =sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
            int_0^inftyt^muexpo-pars2ell + 1t,dd t
            \[3mm]&=sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
            1 over pars2ell + 1^mu + 1
            overbraceint_0^inftyt^muexpo-t,dd t^dsGammaparsmu + 1
            endalign
            where $Gammaparsz$ is the
            Gamma Function.




            beginalign
            &color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
            sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
            Gammaparsmu + 1 over pars2ell + 1^mu + 1
            \[3mm]&=
            lim_mu to 0partialdmubracks%
            Gammaparsmu + 1sum_ell = 0^infty
            pars-1^ellover pars2ell + 1^mu + 1
            \[3mm]&=
            lim_mu to 0braces%
            Gamma'parsmu + 1sum_ell = 0^infty
            pars-1^ellover pars2ell + 1^mu + 1
            +Gammaparsmu + 1partialdmubracks%
            sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
            \[3mm]&=-gammasum_ell = 0^inftypars-1^ellover 2ell + 1
            +
            lim_mu to 0partialdmu
            sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1tag1
            endalign
            In this result, we used $Psipars1 = -gamma$ and $Gammapars1 = 1$ where
            $Psiparsz equiv ddlnGammaparsz/dd z$ is the
            Digamma Function and $gamma$ is the
            Euler-Mascheroni constant.




            The first $ell$-sum in the right member of $pars1$ is given by:
            beginalign
            &sum_ell = 0pars-^ell over 2ell + 1=
            sum_ell = 0pars1 over 4ell + 1 - 1 over 4ell + 3
            =1 over 8sum_ell = 01 over parsell + 1/4parsell + 3/4
            \[3mm]&=-,1 over 4bracksPsipars1 over 4 - Psipars3 over 4
            = pi over 4
            endalign
            where we used the identities:
            beginalign
            sum_ell = 0^infty1 over parsell + z_0parsell + z_1
            &=Psiparsz_0 - Psiparsz_1 over z_0 - z_1tag1.1
            \[3mm]Psiparsz - Psipars1 - z &= -picotparspi ztag1.2
            endalign
            $$
            mboxThen,quad
            color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
            -,1 over 4,gammapi + lim_mu to 0partialdmu
            sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1tag2
            $$
            Also,
            beginalign
            sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
            &=sum_ell = 0^infty1 over bracks2pars2ell + 1^mu + 1
            -sum_ell = 0^infty1 over bracks2pars2ell + 1 + 1^mu + 1
            \[3mm]&=2^-2mu - 2bracks%
            sum_ell = 0^infty1 over parsell + 1/4^mu + 1
            -sum_ell = 0^infty1 over parsell + 3/4^mu + 1
            \[3mm]&=2^-2mu - 2bracks%
            zetaparsmu + 1,1 over 4 - zetaparsmu + 1,3 over 4
            endalign
            where $dszetaparss,q equiv sum_n = 0^infty1 over parsq + n^s$
            with $Reparss > 1$ and $Reparsq > 0$ i s the
            Hurwitz Zeta Function or/and Generalizated Zeta Funcion .



            So,
            beginalign
            &lim_mu to 0partialdmusum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
            \[3mm]&=-,1 over 4,lnpars2
            underbraceoverbracesum_ell = 0^infty1 over parsell + 3/4parsell + 1/4
            ^ds2bracksPsipars3/4 - Psipars1/4 = 2pi
            _dsmboxSee pars1.1 mboxand pars1.2
            + 1 over 4
            overbracepartialdmubracks%
            zetaparsmu,1 over 4 - zetaparsmu,3 over 4_mu = 1
            ^ds-gamma_1pars1/4 + gamma_1pars3/4
            endalign
            where $gamma_nparsz$ is a
            Generalizated Stieltjes Constant
            .




            With this result, $pars2$ is reduced to:
            beginalign
            color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2
            &=-,1 over 4,braces%
            pibracks%
            gamma + 2lnpars2 + gamma_1pars1 over 4 - gamma_1pars3 over 4
            tag3
            endalign
            The difference $gamma_1pars1/4 - gamma_1pars3/4$ is evaluated with the 1846 Carl Malmsten identity
            :
            $$
            gamma_1parsm over n - gamma_1pars1 - m over n
            =-pibracksgamma + lnpars2pi ncotparsmpi over n
            + 2pisum_ell = 1^n - 1
            sinpars2pi m over n,elllnparsGammaparsell over n
            $$




            With $m = 1$ and $n = 4$:
            beginalign
            &gamma_1pars1 over 4 - gamma_1pars3 over 4
            \[3mm]&=-pibracksgamma + lnpars8picotparspi over 4
            + 2pisum_ell = 1^3sinparspi,ell over 2
            lnparsGammaparsell over 4
            \[3mm]&=-pibracksgamma + 2lnpars2 + lnpars2pi
            \[3mm]&phantom=
            + 2pibrackssinparspi over 2lnparsGammapars1 over 4
            + sinparspilnparsGammapars1 over 2
            + sinpars3pi over 2Gammapars3 over 4
            \[3mm]&=-pibracksgamma + 2lnpars2 + lnpars2pi
            +2pibrackslnparsGammapars1 over 4 - lnparsGammapars3 over 4
            \[3mm]&=-pibracksgamma + 2lnpars2 - 2pibracks%
            lnparsroot2pi +lnparsGammapars3 over 4 over Gammapars1 over 4
            \[3mm]&=-pibracksgamma + 2lnpars2
            -2pilnparsroot2pi,Gammapars3 over 4 over Gammapars1 over 4
            endalign




            By replacing this result in $pars3$, we find:
            $$color#00flarge%
            int_0^1lnparslnpars1 over x,dd x over 1 + x^2
            =pi over 2,lnparsrootvphantomlarge A2pi,
            Gammapars3/4 over Gammapars1/4
            $$




            As an 'extra-bonus' we can use the identity
            $dsGammaparsz = pi over Gammapars1 - zsinparspi z$ to 'kill' one of the $Gamma,$'s functions:
            $dsGammapars1 over 4 = root2pi over Gammapars3/4$ which yields:
            $$
            int_0^1lnparslnpars1 over x,dd x over 1 + x^2
            =pi over 2,lnparsGamma^,2pars3/4 over rootpi
            $$






            share|cite|improve this answer















            $newcommand+^dagger
            newcommandangles[1]leftlangle #1 rightrangle
            newcommandbraces[1]leftlbrace #1 rightrbrace
            newcommandbracks[1]leftlbrack #1 rightrbrack
            newcommandceil[1],leftlceil #1 rightrceil,
            newcommandddrm d
            newcommanddowndownarrow
            newcommandds[1]displaystyle#1
            newcommandequalby[1]#1 atop = atop vphantomhuge A
            newcommandexpo[1],rm e^#1,
            newcommandfermi,rm f
            newcommandfloor[1],leftlfloor #1 rightrfloor,
            newcommandhalf1 over 2
            newcommandicrm i
            newcommandiffLongleftrightarrow
            newcommandimpLongrightarrow
            newcommandisdiv,left.rightvert,
            newcommandket[1]leftvert #1rightrangle
            newcommandol[1]overline#1
            newcommandpars[1]left( #1 right)
            newcommandpartiald[3]fracpartial^#1 #2partial #3^#1
            newcommandppcal P
            newcommandroot[2],sqrt[#1],#2,,
            newcommandsech,rm sech
            newcommandsgn,rm sgn
            newcommandtotald[3]fracrm d^#1 #2rm d #3^#1
            newcommandul[1]underline#1
            newcommandverts[1]leftvert, #1 ,rightvert$
            $dsint_0^1lnparslnpars1 over x,dd x over 1 + x^2
            =pi over 2,lnparsrootvphantomlarge A2pi,
            Gammapars3/4 over Gammapars1/4: Large ?$




            With $dsx to 1/x$:
            $$
            color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
            int_infty^1lnparslnparsx,pars-,dd x/x^2 over 1 + 1/x^2
            =int_1^inftylnparslnparsx over 1 + x^2,dd x
            $$




            With $x equiv expotquadiffquad t = lnparsx$:
            beginalign
            &color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
            int_0^inftylnparst over 1 + expo2t,expotdd t
            =int_0^inftylnparstexpo-t,1 over 1 + expo-2t,dd t
            \[3mm]&=int_0^inftylnparstexpo-t,
            sum_ell = 0^inftypars-1^ellexpo-2ell t,dd t
            =sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
            int_0^inftyt^muexpo-pars2ell + 1t,dd t
            \[3mm]&=sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
            1 over pars2ell + 1^mu + 1
            overbraceint_0^inftyt^muexpo-t,dd t^dsGammaparsmu + 1
            endalign
            where $Gammaparsz$ is the
            Gamma Function.




            beginalign
            &color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
            sum_ell = 0^inftypars-1^elllim_mu to 0partialdmubracks%
            Gammaparsmu + 1 over pars2ell + 1^mu + 1
            \[3mm]&=
            lim_mu to 0partialdmubracks%
            Gammaparsmu + 1sum_ell = 0^infty
            pars-1^ellover pars2ell + 1^mu + 1
            \[3mm]&=
            lim_mu to 0braces%
            Gamma'parsmu + 1sum_ell = 0^infty
            pars-1^ellover pars2ell + 1^mu + 1
            +Gammaparsmu + 1partialdmubracks%
            sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
            \[3mm]&=-gammasum_ell = 0^inftypars-1^ellover 2ell + 1
            +
            lim_mu to 0partialdmu
            sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1tag1
            endalign
            In this result, we used $Psipars1 = -gamma$ and $Gammapars1 = 1$ where
            $Psiparsz equiv ddlnGammaparsz/dd z$ is the
            Digamma Function and $gamma$ is the
            Euler-Mascheroni constant.




            The first $ell$-sum in the right member of $pars1$ is given by:
            beginalign
            &sum_ell = 0pars-^ell over 2ell + 1=
            sum_ell = 0pars1 over 4ell + 1 - 1 over 4ell + 3
            =1 over 8sum_ell = 01 over parsell + 1/4parsell + 3/4
            \[3mm]&=-,1 over 4bracksPsipars1 over 4 - Psipars3 over 4
            = pi over 4
            endalign
            where we used the identities:
            beginalign
            sum_ell = 0^infty1 over parsell + z_0parsell + z_1
            &=Psiparsz_0 - Psiparsz_1 over z_0 - z_1tag1.1
            \[3mm]Psiparsz - Psipars1 - z &= -picotparspi ztag1.2
            endalign
            $$
            mboxThen,quad
            color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2=
            -,1 over 4,gammapi + lim_mu to 0partialdmu
            sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1tag2
            $$
            Also,
            beginalign
            sum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
            &=sum_ell = 0^infty1 over bracks2pars2ell + 1^mu + 1
            -sum_ell = 0^infty1 over bracks2pars2ell + 1 + 1^mu + 1
            \[3mm]&=2^-2mu - 2bracks%
            sum_ell = 0^infty1 over parsell + 1/4^mu + 1
            -sum_ell = 0^infty1 over parsell + 3/4^mu + 1
            \[3mm]&=2^-2mu - 2bracks%
            zetaparsmu + 1,1 over 4 - zetaparsmu + 1,3 over 4
            endalign
            where $dszetaparss,q equiv sum_n = 0^infty1 over parsq + n^s$
            with $Reparss > 1$ and $Reparsq > 0$ i s the
            Hurwitz Zeta Function or/and Generalizated Zeta Funcion .



            So,
            beginalign
            &lim_mu to 0partialdmusum_ell = 0^inftypars-1^ellover pars2ell + 1^mu + 1
            \[3mm]&=-,1 over 4,lnpars2
            underbraceoverbracesum_ell = 0^infty1 over parsell + 3/4parsell + 1/4
            ^ds2bracksPsipars3/4 - Psipars1/4 = 2pi
            _dsmboxSee pars1.1 mboxand pars1.2
            + 1 over 4
            overbracepartialdmubracks%
            zetaparsmu,1 over 4 - zetaparsmu,3 over 4_mu = 1
            ^ds-gamma_1pars1/4 + gamma_1pars3/4
            endalign
            where $gamma_nparsz$ is a
            Generalizated Stieltjes Constant
            .




            With this result, $pars2$ is reduced to:
            beginalign
            color#f00int_0^1lnparslnpars1 over x,dd x over 1 + x^2
            &=-,1 over 4,braces%
            pibracks%
            gamma + 2lnpars2 + gamma_1pars1 over 4 - gamma_1pars3 over 4
            tag3
            endalign
            The difference $gamma_1pars1/4 - gamma_1pars3/4$ is evaluated with the 1846 Carl Malmsten identity
            :
            $$
            gamma_1parsm over n - gamma_1pars1 - m over n
            =-pibracksgamma + lnpars2pi ncotparsmpi over n
            + 2pisum_ell = 1^n - 1
            sinpars2pi m over n,elllnparsGammaparsell over n
            $$




            With $m = 1$ and $n = 4$:
            beginalign
            &gamma_1pars1 over 4 - gamma_1pars3 over 4
            \[3mm]&=-pibracksgamma + lnpars8picotparspi over 4
            + 2pisum_ell = 1^3sinparspi,ell over 2
            lnparsGammaparsell over 4
            \[3mm]&=-pibracksgamma + 2lnpars2 + lnpars2pi
            \[3mm]&phantom=
            + 2pibrackssinparspi over 2lnparsGammapars1 over 4
            + sinparspilnparsGammapars1 over 2
            + sinpars3pi over 2Gammapars3 over 4
            \[3mm]&=-pibracksgamma + 2lnpars2 + lnpars2pi
            +2pibrackslnparsGammapars1 over 4 - lnparsGammapars3 over 4
            \[3mm]&=-pibracksgamma + 2lnpars2 - 2pibracks%
            lnparsroot2pi +lnparsGammapars3 over 4 over Gammapars1 over 4
            \[3mm]&=-pibracksgamma + 2lnpars2
            -2pilnparsroot2pi,Gammapars3 over 4 over Gammapars1 over 4
            endalign




            By replacing this result in $pars3$, we find:
            $$color#00flarge%
            int_0^1lnparslnpars1 over x,dd x over 1 + x^2
            =pi over 2,lnparsrootvphantomlarge A2pi,
            Gammapars3/4 over Gammapars1/4
            $$




            As an 'extra-bonus' we can use the identity
            $dsGammaparsz = pi over Gammapars1 - zsinparspi z$ to 'kill' one of the $Gamma,$'s functions:
            $dsGammapars1 over 4 = root2pi over Gammapars3/4$ which yields:
            $$
            int_0^1lnparslnpars1 over x,dd x over 1 + x^2
            =pi over 2,lnparsGamma^,2pars3/4 over rootpi
            $$







            share|cite|improve this answer















            share|cite|improve this answer



            share|cite|improve this answer








            edited Jul 5 '14 at 19:44


























            answered Mar 2 '14 at 0:28









            Felix Marin

            65.6k7105135




            65.6k7105135




















                up vote
                5
                down vote













                See also V. Adamchik's formula $$int_0^1 fracx^p-11+x^nlog log frac1xdx = fracgamma+log(2n)2n(psi(fracp2n)-psi(fracn+p2n))+frac12n(zeta'(1,fracp2n)-zeta'(1,fracn+p2n))$$ in http://dx.doi.org/10.1145/258726.258736 .






                share|cite|improve this answer

























                  up vote
                  5
                  down vote













                  See also V. Adamchik's formula $$int_0^1 fracx^p-11+x^nlog log frac1xdx = fracgamma+log(2n)2n(psi(fracp2n)-psi(fracn+p2n))+frac12n(zeta'(1,fracp2n)-zeta'(1,fracn+p2n))$$ in http://dx.doi.org/10.1145/258726.258736 .






                  share|cite|improve this answer























                    up vote
                    5
                    down vote










                    up vote
                    5
                    down vote









                    See also V. Adamchik's formula $$int_0^1 fracx^p-11+x^nlog log frac1xdx = fracgamma+log(2n)2n(psi(fracp2n)-psi(fracn+p2n))+frac12n(zeta'(1,fracp2n)-zeta'(1,fracn+p2n))$$ in http://dx.doi.org/10.1145/258726.258736 .






                    share|cite|improve this answer













                    See also V. Adamchik's formula $$int_0^1 fracx^p-11+x^nlog log frac1xdx = fracgamma+log(2n)2n(psi(fracp2n)-psi(fracn+p2n))+frac12n(zeta'(1,fracp2n)-zeta'(1,fracn+p2n))$$ in http://dx.doi.org/10.1145/258726.258736 .







                    share|cite|improve this answer













                    share|cite|improve this answer



                    share|cite|improve this answer











                    answered Mar 1 '14 at 18:40









                    R. J. Mathar

                    6912




                    6912




















                        up vote
                        4
                        down vote













                        The above integral was long-time known as the Vardi's integral. Quite recently, an interesting research work devoted to this integral was published by Iaroslav Blagouchine. It appears that this integral was first evaluated by Carl Malmsten in 1842 (and not by Ilan Vardi in 1988). Blagouchine describes two different methods for its evaluation: the original Malmsten's method and the contour integration method. In the same paper, numerous integrals similar to the above one are also treated, and it is shown that many of them may be evaluated by the contour integration methods.



                        More recent paper by Blagouchine (mentioned above in the context of Malmsten's formula derived in 1846) is also integersting, but it is less directly related to the integral in question than the first one.






                        share|cite|improve this answer



























                          up vote
                          4
                          down vote













                          The above integral was long-time known as the Vardi's integral. Quite recently, an interesting research work devoted to this integral was published by Iaroslav Blagouchine. It appears that this integral was first evaluated by Carl Malmsten in 1842 (and not by Ilan Vardi in 1988). Blagouchine describes two different methods for its evaluation: the original Malmsten's method and the contour integration method. In the same paper, numerous integrals similar to the above one are also treated, and it is shown that many of them may be evaluated by the contour integration methods.



                          More recent paper by Blagouchine (mentioned above in the context of Malmsten's formula derived in 1846) is also integersting, but it is less directly related to the integral in question than the first one.






                          share|cite|improve this answer

























                            up vote
                            4
                            down vote










                            up vote
                            4
                            down vote









                            The above integral was long-time known as the Vardi's integral. Quite recently, an interesting research work devoted to this integral was published by Iaroslav Blagouchine. It appears that this integral was first evaluated by Carl Malmsten in 1842 (and not by Ilan Vardi in 1988). Blagouchine describes two different methods for its evaluation: the original Malmsten's method and the contour integration method. In the same paper, numerous integrals similar to the above one are also treated, and it is shown that many of them may be evaluated by the contour integration methods.



                            More recent paper by Blagouchine (mentioned above in the context of Malmsten's formula derived in 1846) is also integersting, but it is less directly related to the integral in question than the first one.






                            share|cite|improve this answer















                            The above integral was long-time known as the Vardi's integral. Quite recently, an interesting research work devoted to this integral was published by Iaroslav Blagouchine. It appears that this integral was first evaluated by Carl Malmsten in 1842 (and not by Ilan Vardi in 1988). Blagouchine describes two different methods for its evaluation: the original Malmsten's method and the contour integration method. In the same paper, numerous integrals similar to the above one are also treated, and it is shown that many of them may be evaluated by the contour integration methods.



                            More recent paper by Blagouchine (mentioned above in the context of Malmsten's formula derived in 1846) is also integersting, but it is less directly related to the integral in question than the first one.







                            share|cite|improve this answer















                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Nov 29 '14 at 2:42









                            Iaroslav Blagouchine

                            32727




                            32727











                            answered Jun 24 '14 at 21:50









                            Mark

                            812




                            812






















                                 

                                draft saved


                                draft discarded


























                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f121545%2fevaluating-int-01-log-log-left-frac1x-right-fracdx1x2%23new-answer', 'question_page');

                                );

                                Post as a guest













































































                                Comments

                                Popular posts from this blog

                                What is the equation of a 3D cone with generalised tilt?

                                Color the edges and diagonals of a regular polygon

                                Relationship between determinant of matrix and determinant of adjoint?